Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên hỏi mỗi câu một bài để tiện thảo luận nhé.
Câu 1.
\(Z_L=\omega L=400\Omega\)
\(Z_C=100\Omega\)
Để URL vuông pha vơi URC thì
\(\tan\varphi_{RL}.\tan\varphi_{RC}=-1\)
\(\Rightarrow \dfrac{Z_L}{R}.\dfrac{-Z_C}{R}=-1\)
\(\Rightarrow R = \sqrt{Z_L.Z_C}=\sqrt{400.100}=200\Omega\)
Câu 2: Tương tự câu 1.
\(\tan \varphi_{RL}.\tan\varphi_m=-1\)
\(\Rightarrow \dfrac{Z_L}{R}.\dfrac{Z_L-Z_C}{R}=-1\)
\(\Rightarrow ...\)
\(Z_L=100\Omega\)
\(Z_C=200\Omega\)
Để hiệu điện thế hai đầu mạch nhanh pha \(\pi/2\) so với hiệu điện thế hai bản tụ thì u cùng pha với i, suy ra xảy ra cộng hưởng.
\(\Rightarrow Z_{Cb}=Z_L=100\Omega\)
\(Z_{Cb}< Z_C\) nên ta cần ghép song song C' với C (giống như cách ghép điện trở)
\(\dfrac{1}{Z_{Cb}}=\dfrac{1}{Z_C}+\dfrac{1}{Z_{C'}}\Rightarrow \dfrac{1}{100}=\dfrac{1}{200}+\dfrac{1}{Z_{C'}}\)
\(\Rightarrow Z_{C'}=200\Omega\)
\(\Rightarrow C'=\dfrac{10^{-4}}{2\pi}\)
1.
\(Z_L=\omega L = 250\Omega\)
\(\cos \varphi = \dfrac{R+r}{Z}\Rightarrow Z = \dfrac{100+100}{0,8}=250\Omega\)
\(Z=\sqrt{(R+r)^2+(Z_L-Z_C)^2}\)
\(\Rightarrow 250=\sqrt{(100+100)^2+(250-Z_C)^2}\)
Do u sớm pha hơn i nên suy ra \(Z_C=100\Omega\)
\(\Rightarrow C = \dfrac{10^-4}{\pi}(F)\)
Chọn B
2. Công suất tiêu thụ cực đại khi mạch cộng hưởng
\(\Rightarrow Z_{Cb}=Z_L=250\Omega\)
Mà \(Z_C=100\Omega <250\Omega\)
Suy ra cần ghép nối tiếp C1 với C và \(Z_{C1}=Z_{Cb}-Z_C=250=100=150\Omega\)
\(\Rightarrow C_1 = \dfrac{2.10^-4}{3\pi}(F)\)
Chọn D.
Chia thành hai bài toán nhỏ
Bài 1, $R$ thay đổi để $U_{RL}$ không đổi, bài này quen thuộc rồi, ta được : $Z_{C_1}=2Z_L=400 \Omega$
Bài toán 2: $C$ thay đổi để $I_{max}$ là cộng hưởng thì $Z_C=Z_L=200 \Omega$
Vậy cần tăng tụ C thêm $\dfrac{10^{-4}}{4\pi}F$
Mạch chỉ gồm tụ điện và điện trở nên
\(U_C=U_{AB}.\sin\alpha=50\sqrt{3}V\)
đáp án A