K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 6 2020

Gọi \(M\left(x;y;0\right)\) \(\Rightarrow OM^2=x^2+y^2\)

\(d^2\left(M;\left(\alpha\right)\right)=\frac{\left(x+2y+4\right)^2}{9}\) ; \(d^2\left(M;\left(\beta\right)\right)=\frac{\left(2x-2y-13\right)^2}{9}\)

\(\left(x+2y+4\right)^2=\left(2x-2y-13\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2y+4=2x-2y-13\\x+2y+4=-2x+2y+13\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4y+17\\3x=9\Rightarrow x=3\end{matrix}\right.\)

Th1: \(\left\{{}\begin{matrix}x=3\\x^2+y^2=\frac{\left(x+2y+4\right)^2}{9}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\9y^2+81=4y^2+28y+49\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\5y^2-28y+32=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(3;4;0\right)\\M\left(3;\frac{8}{5};0\right)\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x=4y+17\\x^2+y^2=\frac{\left(x+2y+4\right)^2}{9}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4y+17\\\left(4y+17\right)^2+y^2=\left(2y+7\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4y+17\\13y^2+108y+240=0\end{matrix}\right.\) (vô nghiệm)

Bạn kiểm tra lại tính toán

9 tháng 11 2017

Đáp án A.

Vecto pháp tuyến

Một điểm trên giao tuyến là K(0;-2;0)

Phương trình tham số của 

Gọi I là trung điểm của MN, ta có I(2;3;3)

vậy A M → + A N →  nhỏ nhất khi AI nhỏ nhất

Mà A ∈ α ∩ β nên AI nhỏ nhất khi  A I ⊥ α ∩ β

2 tháng 7 2017

Giải bài 16 trang 102 sgk Hình học 12 | Để học tốt Toán 12

9 tháng 4 2017

Chọn B

20 tháng 8 2017

Đáp án B

Mặt phẳng (α) song song với mặt phẳng (β) khi  chỉ khi:

Hệ này  nghiệm nên không  giá trị của m thỏa mãn.

22 tháng 4 2019

25 tháng 11 2019

25 tháng 2 2019

N' đối xứng với N qua đường thẳng d nên K là trung điểm của NN'

Vậy N' có tọa độ 

5 tháng 11 2017

28 tháng 10 2018

Chọn A