Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Để M<0 thì:
\(\hept{\begin{cases}x-1< 0\\x+2< 0\\3-x< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 1\\x-2\\x>3\end{cases}}\)
Không chắc lắm đâu
#Châu's ngốc
Ta có:
Để M<0 thì:
\(\hept{\begin{cases}x-1< 0\\x+2< 0\\3-x< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 0\\x-2\\x>3\end{cases}}\)
#Châu's ngốc
Lớp 7 cần lập bảng ra; các điểm quan trọng
x={-2,1,3
cách khác,
\(\Leftrightarrow-M=\left(x-1\right)\left(x+2\right)\left(x-3\right)>0\)
\(x< -2\Rightarrow\left\{{}\begin{matrix}x-1< 0\\x+2< 0\\x-3< 0\\-M< 0\Rightarrow M>0\Rightarrow.vN_o\end{matrix}\right.\)
\(-2< x< 1\Rightarrow\left\{{}\begin{matrix}x-1< 0\\x+2>0\\x-3< 0\\-M>0\Rightarrow M< 0\Rightarrow.N_o:-2< x< 1\end{matrix}\right.\)
\(1< x< 3\Rightarrow\left\{{}\begin{matrix}x-1>0\\x+2>0\\x-3< 0\\-M< 0\Rightarrow M>0\Rightarrow.vN_o\end{matrix}\right.\)
\(x>3\Rightarrow\left\{{}\begin{matrix}x-1>0\\x+2>0\\x-3>0\\-M>0\Rightarrow M< 0\Rightarrow.vN_o:x>3\end{matrix}\right.\)
Kết luận: \(\left[{}\begin{matrix}1< x< 2\\x>3\end{matrix}\right.\)
đổi -M để cho các nhân tử(x-1)(x+2)(x-3) cùng chiều x đỡ nhầm
1,
\(A=\frac{\sqrt{x-3}}{2}\) có giá trị nguyên nên \(\left(\sqrt{x}-3\right)⋮2\)
Suy ra x là số chính phương lẻ.
Vì x < 30 nên\(x\in\left\{1^2;3^2;5^2\right\}\) hay \(x\in\left\{1;9;25\right\}\)
2,
Khi x là số nguyên thì \(\sqrt{x}\) hoặc là số nguyên (nếu x là số chính phương) hoặc là số vô tỉ (nếu x không phải số chính phương). Để \(B=\frac{5}{\sqrt{x-1}}\) là số nguyên thì \(\sqrt{x}\) không thể là số vô tỉ, do đó \(\sqrt{x}\) là số nguyên và \(\sqrt{x-1}\) phải là ước của 5 tức là √xx - 1 ∈ Ư(5). Để B có nghĩa ta phải có x \(\ge\)0 và x\(\ne\) 1. Ta có bảng sau:
\(\sqrt{x-1}\) | 1 | -1 | 5 | -5 |
\(\sqrt{x}\) | 2 | 0 | 6 | -4(loại) |
\(x\) | 4 | 0 | 36 |
Vậy x\(\in\){4;0;36} (các giá trị này đều thoả mãn điều kiện x \(\ge\) 0 và x\(\ne\) 1).
x={-2,1,3
cách khác,
⇔−M=(x−1)(x+2)(x−3)>0
x<−2⇒ x−1<0
x+2<0
x−3<0−M<0⇒M>0⇒.vN
−2<x<1⇒ x−1<0
x+2>0
x−3<0−M>0⇒M<0⇒.No:−2<x<1
−2<x<1⇒ x−1<0
x+2>0
x−3<0−M>0⇒M<0⇒.No:−2<x<1
x>3⇒ x−1>0
x+2>0
x−3>0−M>0⇒M<0⇒.vNo:x>3
Kết luận: 1<x<2x>3
1<x<2x>3
đổi -M để cho các nhân tử(x-1)(x+2)(x-3) cùng chiều x đỡ nhầm