\(\frac{\sqrt{x}+1}{\sqrt{x}+3}\). Tìm x thuộc Z để M thuộc Z

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

1) +) ta có : \(C-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}=\dfrac{3\sqrt{x}-x+\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{-\left(x-4\sqrt{x}+4\right)+3}{3\left(x+\sqrt{x}+1\right)}=\dfrac{-\left(\sqrt{x}-2\right)^2+3}{3\left(x+\sqrt{x}+1\right)}\)

không thể cm được đâu bn --> xem lại đề

2) +) ta có : \(D=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)

--> để \(D\in Z\Leftrightarrow\sqrt{x}+2\) là ước của 3 \(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow x=1\) vậy \(x=1\)

3) +) tương tự 2)

4) a) +) điều kiện xác định : \(x>0;x\ne4\)

ta có : \(A=\left(\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-2}{x+3\sqrt{x}}\)

\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}-\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)

b) ta có : \(A=3\Leftrightarrow\dfrac{\sqrt{x}-3}{\sqrt{x}-2}=3\Leftrightarrow\sqrt{x}-3=3\sqrt{x}-6\)

\(\Leftrightarrow2\sqrt{x}=3\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\) vậy \(x=\dfrac{9}{4}\)

c) ta có : \(B=A.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{x-9}{x-4}=1-\dfrac{5}{x-4}\)

tương tự 2 )
\(\)

3 tháng 6 2017

Câu a:

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)

\(=\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{2x+2-3\sqrt{x}-1}{x-1}=\frac{2x-3\sqrt{x}+1}{x-1}\)

\(=\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}=2-\frac{3}{\left(\sqrt{x}+1\right)}\)

A nguyên khi và chỉ khi \(3⋮\left(\sqrt{x}+1\right)\)

  • TH1 : \(\left(\sqrt{x}+1\right)=1\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
  • TH2 : \(\left(\sqrt{x}-1\right)=3\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

Câu b : \(\frac{m\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}=\sqrt{x}-2\Leftrightarrow2m\sqrt{x}-m-x+\sqrt{x}+2=0\)

\(\Leftrightarrow x-\left(2m+1\right)\sqrt{x}+m-2=0\)phương trình có hai nghiệm phân biệt khi 

\(\Delta>0\)hay \(\Delta=\left(2m+1\right)^2-\left(m-2\right)4=m^2+9>0\forall m\)

Câu C: để \(A=2-\frac{3}{\sqrt{x}+1}\ge2-\frac{3}{0+1}=-1\)\(\Rightarrow A_{Min}=-1\)khi \(x=0\)

2 tháng 11 2019

a) ĐK : x ≥ 0 ; x 2 ; x ≠ 3

A= \(\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{3\sqrt{x}-3}{x-5\sqrt{x}+6}\)

=\(\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\text{​​}\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

=\(\frac{x-4-x+3\sqrt{x}-\sqrt{x}+3-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

=\(\frac{-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

=\(\frac{-1}{\sqrt{x}-3}\)

Vậy...

b)Ta có A<-1

\(\frac{-1}{\sqrt{x}-3}\) <-1

\(\frac{-1}{\sqrt{x}-3}\) +1<0

\(\frac{\sqrt{x}-4}{\sqrt{x}-3}\) <0

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-4< 0\\\sqrt{x}-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-4>0\\\sqrt{x}-3< 0\end{matrix}\right.\end{matrix}\right.\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\\\left\{{}\begin{matrix}x>16\\x< 9\end{matrix}\right.\end{matrix}\right.\)

⇒9< x <16

Vậy...

c) Ta có A = \(\frac{-1}{\sqrt{x}-3}\)

⇒2A=\(\frac{-2}{\sqrt{x}-3}\)

Để 2A ∈ Z thì \(\frac{-2}{\sqrt{x}-3}\) ∈ Z

\(\sqrt{x}-3\) ∈ Ư(-2) =\(\left\{1;-1;2;-2\right\}\)

Ta có bảng

\(\sqrt{x}-3\) 1 -1 2 -2
x 16(tm) 4(tm) 25(tm) 1(tm)

Vậy...

OK!!!hehe đó bạn