K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2\)

     \(=4a^2b^2-\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)\)

      \(=4a^2b^2-a^4-b^4-c^4-2a^2b^2+2b^2c^2+2c^2a^2\)

       \(=2a^2b^2-a^4-b^4-c^4+2b^2c^2+2c^2a^2\)

        \(=-a^4+2a^2b^2-b^4-c^4+2b^2c^2+2c^2a^2\)

        \(=-\left(a^2-b^2\right)^2-c^2\left(c^2-2b^2-2a^2\right)>0\)

Vậy A > 0

14 tháng 8 2019

tại sao cái cuối cùng lại lớn hơn 0 ???
 

26 tháng 10 2018

      \(\left(a^2+b^2-c^2\right)^2-4a^2b^2\)

\(=\left(a^2+b^2-c^2\right)^2-\left(2ab\right)^2\)

\(=\left[a^2+b^2-c^2-2ab\right]\left[a^2+b^2-c^2+2ab\right]\)

\(=\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]\)

\(=\left(a-b-c\right)\left(a-b+c\right)\left(a+b+c\right)\left(a+b-c\right)\)

Vì a,b,c là 3 cạnh của 1 tam giác nên theo bất đẳng thức tam giác, ta suy ra:

\(a-b-c< 0,a-b+c>0,a+b-c>0\)

Mặt khác \(a,b,c>0\Rightarrow a+b+c>0\)

\(\Rightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2=\left(a-b-c\right)\left(a-b+c\right)\left(a+b+c\right)\left(a+b-c\right)< 0\)

26 tháng 10 2018

\(VT=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)

\(VT=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)

\(VT=\left[\left(a-b\right)^2-c^2\right].\left[\left(a+b\right)^2-c^2\right]\)

\(VT=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)

Theo bđt tam giác ta có : 

\(a-b< c\)\(\Leftrightarrow\)\(a-b-c< 0\) \(\left(1\right)\)

\(a+b>c\)\(\Leftrightarrow\)\(a+b-c>0\) \(\left(2\right)\)

\(a+c>b\)\(\Leftrightarrow\)\(a-b+c>0\) \(\left(3\right)\)

\(a+b+c>0\) ( vì độ dài không có âm ) \(\left(4\right)\)

Từ (1), (2), (3) và (4) suy ra \(VT< 0\) ( vì tích gồm 1 số âm và 3 số dương ) 

Vậy với a, b, c là độ dài ba cạnh của một tam giác ta có \(\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\)

Chúc bạn học tốt ~ 

20 tháng 6 2015

a2 = (m2 + n2) = m4 + 2m2.n2 + n4

b2 = (m2 - n2)2   = m4 - 2m2.n2 + n4 

c2 = (2mn)2 = 4m2.n2 

Nhận xét:  a2 - b2 = c2 => a2 = b2 + c2

Theo ĐL pi - ta - go đảo => a; b; c là độ dài 3 cạnh của 1 tam giác vuông

18 tháng 7 2015

A=4a^2b^2-(a^2+b^2-c^2)^2

=(2ab)^2-(a^2+b^2-c^2)^2

=(a^2+b^2-c^2+2ab)[(2ab-a^2-b^2+c^2)]

=[(a+b)^2-c^2]{[-[(a+b)^2-c^2]}

=-[(a+b)^2-c^2)]^2

Theo bđt tam giác ta có a+b>c=>(a+b)^2-c^2>0 => -[(a+b)^2-c^2]<0. Vậy a<0

14 tháng 10 2020

Đề đúng: \(M=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)

a) Ta có:

\(M=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)

\(M=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)

\(M=\left[\left(a^2-2ab+b^2\right)-c^2\right]\left[\left(a^2+2ab+b^2\right)-c^2\right]\)

\(M=\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]\)

\(M=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)

b) Nếu a,b,c là độ dài 3 cạnh của tam giác thì:

\(\hept{\begin{cases}a+b>c\\c+a>b\\b+c>a\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b-c>0\\a-b+c>0\\a-b-c< 0\end{cases}}\) , mà a + b + c > 0

=> \(M< 0\)