cho m =1/2 mũ 2 + 1/3 mũ 2 + 1/4 mũ 2 + .... + 1/45 mũ 2 . chứng tỏ rằng m không phải là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{45^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{44.45}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{44}-\frac{1}{45}\)
\(=1-\frac{1}{45}\)
\(=\frac{44}{45}< \frac{90}{45}=2\)
Có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{8^2}< \frac{1}{7.8}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow B< 1-\frac{1}{8}< 1\)
\(\Rightarrow B< 1\) \(\Rightarrowđpcm\)
\(A=1+2+2^2+2^3+...+2^{1016}\)
\(2A=2.\left(1+2+2^2+2^3+...+2^{2016}\right)\)
\(2A=2+2^2+2^3+2^4+...+2^{2017}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2016}\right)\)
\(A=2^{2017}-1\)
\(B=2^{2017}\)
=> A và B là hai số tự nhiên liên tiếp
Có A = 1/2 + 1/2^2 + 1/2^3 + ......+1/2^2018
Nên 2A = 1 + 1/2 + 1/2^2 + ......+1/2^2017
Suy ra 2A - A = (1+ 1/2 + 1/2^2 +.........+1/2^2017) - (1/2 + 1/2^2 + 1/2^3 + ......+ 1/2^2^2008)
A = 1 - 1/2^2008
Nên 2^2008*A + 1 = 2^2008 * (1 - 1/2^2008) + 1
=2^2008 - 1 +1
=2^2008
Vậy, 2^2008*A+1 là 1 lũy thừa với cơ số tự nhiên
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{10-9}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}< 1\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\\ A< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\\ A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}\\ A< \frac{9}{10}< 1\Rightarrow A< 1\)
a) Số số hạng là : ( 2014 - 4 ) : 3 + 1 = 671
S là : ( 2014 + 4 ) x 671 : 2 = 677039
b) Có nếu n là số chẵn \(\Rightarrow n⋮2\Rightarrow n\cdot\left(n+2013\right)⋮2\)
Nếu n là số lẻ \(\Rightarrow n+2013\)là số chẵn chia hết cho 2 \(\Rightarrow n\cdot\left(n+2013\right)⋮2\)
Vậy \(n\cdot\left(n+2013\right)\)luôn luôn chia hết cho 2 với mọi n ( ĐPCM )
c) \(M=2+2^2+2^3+...+2^{20}\)
\(2M=2\cdot\left(2+2^2+2^3+...+2^{20}\right)\)
\(2M=2^2+2^3+...+2^{21}\)
\(2M-M=2^{21}-2\)
Mà cứ 5 thừa số 2 thì số cuối của \(2^{21}\) sẽ lặp lại
\(\Rightarrow2^{21}\)có tận cùng là 2
\(\Rightarrow2^{21}-2\)có tận cùng là 0 chia hết cho 5
\(\Rightarrow M⋮5\)