K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2024

M   = \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}\)+...+\(\dfrac{1}{2^{2024}}\)

2M = 1   + \(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2023}}\)

2M - M = 1 + \(\dfrac{1}{2}+\dfrac{1}{2^2} +...+\dfrac{1}{2^{2023}}\) - ( \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}\) + \(\dfrac{1}{2^{2024}}\))

M = (1 - \(\dfrac{1}{2^{2024}}\)) + (\(\dfrac{1}{2}-\dfrac{1}{2}\)) + (\(\dfrac{1}{2^2}-\dfrac{1}{2^2}\)) + ...+ (\(\dfrac{1}{2^{2023}}\) - \(\dfrac{1}{2^{2023}}\))

M = 1 - \(\dfrac{1}{2^{2024}}\) + 0 + 0 + 0+...+ 0

M = 1  - \(\dfrac{1}{2^{2024}}\) < 1

M < 1

 

22 tháng 3 2024

?

 

18 tháng 3 2023

Chúng ta có thể sử dụng công thức tổng của dãy số mũ ba để tính tổng này:

1^3 + 2^3 + 3^3 + ... + n^3 = (1 + 2 + 3 + ... + n)^2

Áp dụng công thức này vào đề bài, ta có:

M = (1^3 + 2^3 + 3^3 + ... + 2024^3) = (1 + 2 + 3 + ... + 2024)^2

Do đó, M là bình phương của một số nguyên, vì tổng các số nguyên từ 1 đến 2024 là một số nguyên. Do đó, ta kết luận rằng M thuộc tập số nguyên.

15 tháng 3 2018

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right).n}\)

\(\Rightarrow M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right).n}\)

\(\Rightarrow M< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(\Rightarrow M< 1-\dfrac{1}{n}< 1\)

Vậy \(M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)

27 tháng 5 2021

Để \(M< 1\), ta phải có điều kiện: \(n\in\) R*. Nếu \(n=0\) thì \(M\) không xác định.
\(M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}\)
                                                 \(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
                                                 \(=1-\dfrac{1}{n}< 1\)
Vậy \(M< 1\) với \(n\in\) R*.

20 tháng 3 2016

nhanh giúp mình

10 tháng 7 2015

Ta có: k2 > k2 - 1 = (k-1)(k+1) 
⇒ 1/k2 < 1/[(k-1).(k+1)] = [1/(k-1) - 1/(k+1)]/2 (*) 
Áp dụng (*), ta có: 
1/22 + 1/32 + 1/42 + ... + 1/n2 
< 1/22 + 1/(2.4) + 1/(3.5) + ... + 1/[(n-1).(n+1)] 
= 1/22 + [1/2 - 1/4 + 1/3 - 1/5 + ... + 1/(n-1) - 1/(n+1)]/2 
= 1/22 + [1/2 + 1/3 - 1/n - 1/(n+1)]/2 
= 2/3 - [1/n + 1/(n+1)]/2 < 2/3 < 1

24 tháng 6 2019

A= \(\frac{1}{2}\) + \(\frac{1}{2^2}\) + \(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\)

\(\Rightarrow\) 2A = 1 + \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)

\(\Rightarrow\) 2A - A = ( \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\) ) -

( \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\))

\(\Rightarrow\) A = 1 - \(\frac{1}{2^{100}}\) < 1

Vậy: A < 1
\(\frac{1}{2}\)

24 tháng 6 2019

B= \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

= 2. \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

= 2. ( \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\) )

= 2. \(\left(\frac{1}{1}-\frac{1}{100}\right)\) = \(\frac{99}{50}\)

\(\Rightarrow\) B = \(\frac{99}{50}\) < \(\frac{100}{50}\) = 2

Vậy: B < 2

3 tháng 9 2017

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1