K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2021

Ta có: ^AKB là góc nội tiếp chắn nửa đường tròn (O)

=> ^AKB = 90  (t/c góc nội tiếp ).

Xét tứ giác HKBI ta có:

     ^HKI=900          (do  CD⊥AB tại I)

=> ^HKI + ^ HIB=180.

=> Tứ giác BKHI là tứ giác nội tiếp (dhnb).

23 tháng 1 2021

b) Xét TGiac AHI và Tgiac AKB có:

    ^AKB = ^AHI ( do cùng =90 độ)

    ^A chung

=> tam giác AHI đồng dạng với AKB (g - g)

=> AH/AB = AI/AK (cặp cạnh tg ứg tỉ lệ)

=> AH.AK = AI.AB

Mà AI; AB cố định

=> AH.AK không phụ thuộc vào vị trí điểm K (đpcm)

a: Ta có: \(\widehat{CHB}=90^0\)

=>ΔCHB vuông tại H

=>ΔCHB nội tiếp đường tròn đường kính CB(4)

Ta có: \(\widehat{CKB}=90^0\)

=>ΔCKB vuông tại K

=>ΔCKB nội tiếp đường tròn đường kính CB(5)

Từ (4) và (5) suy ra C,H,B,K cùng thuộc đường tròn đường kính CB

b:

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Ta có: \(\widehat{OCB}+\widehat{BCK}=\widehat{OCK}=90^0\)

\(\widehat{OCB}+\widehat{OCA}=\widehat{BCA}=90^0\)

Do đó: \(\widehat{BCK}=\widehat{OCA}\)(1)

Ta có: CHBK là tứ giác nội tiếp

=>\(\widehat{BCK}=\widehat{BHK}\left(2\right)\)

Xét ΔOAC có OC=OA

nên ΔOAC cân tại O

=>\(\widehat{OAC}=\widehat{OCA}\)(3)

Từ (1),(2),(3) suy ra \(\widehat{BHK}=\widehat{OAC}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên HK//AC

 

7 tháng 12 2023

vẽ hộ hình giúp mình với phần a) Cm 2 tam giác nội tiếp

 

Xét tứ giác CHBK có

\(\widehat{CHB}+\widehat{CKB}=90^0+90^0=180^0\)

=>CHBK là tứ giác nội tiếp

=>C,H,B,K cùng thuộc một đường tròn

7 tháng 12 2023

Bạn vẽ hộ mình và cm theo tam giác nội tiếp

 

4 tháng 9 2017
trả lời hay lắm bạn
18 tháng 7 2018

Bạn tự vẽ hình nha:

a)Ta có: gócBCD=gócA (cùng chắn cung BC); gócBCE=gócA (cùng phụ với góc CBA) => CB là pg DCE

b)Vì CB là pg DCE hay CB là pg KCH mà BK vuông góc CK; BH vuông góc CH => BK=BH => BK+BD=BD+BH=DH<ED (quan hệ giữa đường vuông góc với đường xiên)

c)Vì CB là pg của tam giác CDH => BH/BD=CH/CD (1); Mà CB vuông góc CA => Ca là pg ngoài tại C của tam giác CDH => AH/AD=CH/CD (2) . 

  Từ (1) và (2) suy ra: BH/BD=AH/AD (=CH/CD) <=> BH.AD=AH.BD

a: Xét hình thang ABCD có 

O là trung điểm của AB

OM//AD//CB

Do đó: M là trung điểm của CD

hay MD=MC