Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
b)
*Ta thấy x = 4 thì ta có (4 – 4).f(4) = (4– 5).f(4 + 2) suy ra f(6) = 0 hay x = 6 là nghiệm của f(x)
* Với x = 5 thì ta có (5 – 4).f(5) = (5– 5).f(5 + 2)suy ra f(5) = 0 hay x = 5 là nghiệm của f(x)
Vậy f(x) có ít nhất hai nghiệm.
Lời giải:
Ta có:
\(f(-2)=4a-2b+c\)
\(f(3)=9a+3b+c\)
\(\Rightarrow f(-2)+f(3)=13a+b+2c=0\) (theo giả thiết)
\(\Rightarrow f(-2)=-f(3)\Rightarrow f(-2)(f(3)=-f^2(3)\leq 0\)
Do đó ta có đpcm.
Ta có f(-2).f(3)=(4a-2b+c).(9a+3b+c)
=(4a-2b+c).(13a+b+2c-(4a-2b+c)
Mà 13a+b+2c=0\(\Rightarrow\)f(-2).f(3)=\(-\left[\left\{4a-2b+c\right\}^2\right]\)
Có (4a-2b+c)^2 luôn luôn \(\le\)0
Nên f(-2).f(3)\(\le\)0
Lời giải:
\(xf(x-2)=(x-4)f(x)\)
Thay $x=0$:
\(0.f(-2)=-4f(0)\)
\(\Leftrightarrow f(0)=0(1)\)
Thay $x=4$:
\(4f(2)=0.f(4)\)
\(\Leftrightarrow f(2)=0(2)\)
Từ $(1);(2)$ chứng tỏ $x=0; x=2$ là nghiệm của $f(x)$ (còn những nghiệm khác mà ta chưa khai thác được) . Từ đây ta suy ra đa thức $f(x)$ có ít nhất 2 nghiệm (đpcm)
Bài 3:
Vì y tỉ lệ nghịch với x theo hệ số tỉ lệ a=12 nên y=12/x; x=12/y
Vậy: f(x)=12/x
a: f(x)=4 thì x=3
f(x)=0 thì \(x\in\varnothing\)
b: \(f\left(-x\right)=\dfrac{12}{-x}=-\dfrac{12}{x}=-f\left(x\right)\)
Ta có: \(f\left(x\right)=ax^2+bx+c\)
Do a, c là hai số đối nhau nên a + c = 0
\(\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=a+b+c\\f\left(-1\right)=a-b+c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=b\\f\left(-1\right)=-b\end{matrix}\right.\) ( do a, c là 2 số đối nhau, a + c = 0 )
\(\Rightarrow f\left(1\right).f\left(-1\right)=b.\left(-b\right)=-b^2\)
Mà \(b^2\ge0\Rightarrow-b^2\le0\)
\(\Rightarrow f\left(1\right).f\left(-1\right)\le0\) ( đpcm )
Vậy...
Bài 2:
Đặt H(x)=0
\(\Leftrightarrow x^3+3x^2+3x+1=0\)
\(\Leftrightarrow\left(x+1\right)^3=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
Vậy: S={-1}
Bài 1:
a/ Kết quả: f(x) - g(x) + h(x) = 2x - 1
(tự ghép cặp vào r` tính hoặc tính = hàng dọc nhé bn, muộn r` , mk k muốn đánh máy)
b/ 2x - 1 = 0
<=> 2x = 1
<=> x = \(\dfrac{1}{2}\)
Vậy x = .... để f(x) - g(x) + h(x) = 0
Bài 2:
a/ dễ --> tự lm cko quen để đỡ mất căn bản nhé bn!
b/ sửa: g(x) = ..... + 2x3 + 3x
Làm: kết quả: 3x2 + 7x (ns chung là lười nên mk k muốn đánh máy, k hiểu thì ib lại vs mk)
c/ h(x) = 3x2 + 7x = 0
<=> x(3x + 7) = 0
<=> \(\left[{}\begin{matrix}x=0\\3x+7=0\Rightarrow3x=-7\Rightarrow x=\dfrac{-7}{3}\end{matrix}\right.\)
Vậy đa thức h(x) có 2 no là:....(tự ghi)
Thay x = 4 ta được \(\left(4-4\right)f\left(4\right)=\left(4-5\right)f\left(4+2\right)\)
\(\Leftrightarrow-1f\left(6\right)=0\Leftrightarrow f\left(6\right)=0\)
Vậy, 6 là nghiệm của f(x)
Thay x = 5 ta được \(\left(5-4\right)f\left(5\right)=\left(5-5\right)f\left(5+2\right)\)
\(\Leftrightarrow1f\left(5\right)=0\Leftrightarrow f\left(5\right)=0\)
Vậy, 5 là nghiệm của f(x)
P/s: Không biết đúng k nữa, kiến thức lâu ko học