\(\frac{1}{DI^2}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

Xét tam giác vuông ADI vuông tại A và tam giác CDL vuông tại C có:

AD = CD (cạnh hình vuông)

Để học tốt Toán 9 | Giải bài tập Toán 9

Nên ΔADI = ΔCDL (g.c.g)

\(\Rightarrow\) DI = DL

Trong tam giác DKL vuông tại D với đường cao DC. Theo định lí 4, ta có: \(\frac{1}{DL^2}+\frac{1}{DK^2}=\frac{1}{DC^2}\)

Mà: DI = DL (cmt)

\(\Rightarrow\) \(\frac{1}{DI^2}+\frac{1}{DK^2}=\frac{1}{DC^2}\) (đpcm)

8 tháng 2 2022

jjjjjjjjjj

5 tháng 4 2020

a) Gọi E là trung điểm BK

Chứng minh được QE là đường trung bình \(\Delta\)KBC nên QE//BC => QE _|_ AB (vì BC_|_AB) và \(QE=\frac{1}{2}BC=\frac{1}{2}AD\)

Chứng minh AM=QE và AM//QE => Tứ giác AMQE là hình bình hành

Chứng minh AE//NP//MQ (3) 

Xét \(\Delta AQB\)có BK và QE là 2 đường cao của tam giác

=> E là trực tâm tam giác nên AE là đường cao thứ 3 của tam giác AE _|_ BQ

=> BQ _|_ NP

b) Vẽ tia Ax vuông góc với AF. Gọi giao Ax và CD là G

Chứng minh \(\widehat{GAD}=\widehat{BAP}\)(cùng phụ \(\widehat{PAD}\)

=> \(\Delta\)ADG ~ \(\Delta\)ABP (gg) => \(\frac{AP}{AG}=\frac{AB}{AD}=2\Rightarrow AG=\frac{1}{2}AP\)

Ta có \(\Delta\)AGF vuông tại A có AD _|_ GF nên AG.AF=AD.GF(=2SAGF)

=> \(AG^2\cdot AF^2=AD^2\cdot GF^2\left(1\right)\)

Ta chia cả 2 vế củ (1) cho \(AD^2\cdot AG^2\cdot AF^2\)

Mà \(AG^2+AF^2=GF^2\)(định lý Pytago)

\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AG^2}+\frac{1}{AF^2}\Rightarrow\frac{1}{\left(\frac{1}{2}AB\right)^2}=\frac{1}{\left(\frac{1}{2}AP\right)^2}+\frac{1}{AF^2}\)

\(\Rightarrow\frac{4}{AB^2}=\frac{4}{AP^2}+\frac{1}{AF^2}\Rightarrow\frac{1}{AB^2}=\frac{1}{AP^2}+\frac{1}{4AF^2}\)

5 tháng 4 2020

Cảm ơn nhiều ạ!

13 tháng 3 2019

hình mik ko vẽ đc xl!!!(GT+KL cx vậy)

a)Ta có AD//BN(NϵBC) => \(\frac{AM}{AB}=\frac{DM}{DN}\)(dl ta-lét) \(_1\)

Lại có BM//DC(MϵAB) => \(\frac{CB}{CN}=\frac{DM}{DN}\)(dl ta-lét) \(_2\)

từ 1 2 => \(\frac{AM}{AB}=\frac{DM}{DN}=\frac{CB}{CN}\left(đpcm\right)\)

b) ta có: AM//DC(MϵAB) => \(\frac{DI}{IM}=\frac{BC}{AM}=\frac{AB}{AM}\)(hệ quả ; BC=AB)

CMTT => \(\frac{IN}{DI}=\frac{NC}{DA}=\frac{NC}{CB}\)

\(\frac{NC}{CB}=\frac{AB}{AM}\left(cmt\right)\)

\(\Rightarrow\frac{IN}{ID}=\frac{ID}{IM}\Leftrightarrow ID^2=IN\cdot IM\left(đpcm\right)\)

24 tháng 12 2019

câu b sai rồi nhé, DC/AM chứ không phải là BC/AM và DC=AB( 2 cạnh đối của HBH)

16 tháng 3 2021

góc A > 90o