Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
a) xét \(\Delta\)ADI và \(\Delta\)CDL có:
^DAI=^DIL=90(gt)
AD=DC(gt)
^ADI=^CDL(cùng phụ với ^IDC)
=> \(\Delta\)ADI=\(\Delta\)CDL(g.c.g)
=> DI=DL
=> \(\Delta\)DIL cân tại A
b) Ta có: \(\frac{1}{DI^2}+\frac{1}{DK^2}=\frac{1}{DL^2}+\frac{1}{DK^2}\)(vì DI=DK)
Xét \(\Delta\)DKL vuông tại D(gt) có DC là đường cao
=> \(\frac{1}{DL^2}+\frac{1}{DK^2}=\frac{1}{DC^2}\)(theo hệ thức liên hệ tới đường cao)
Mà DC không đổi
=>\(\frac{1}{DC^2}\)không đổi
Vậy \(\frac{1}{DL^2}+\frac{1}{DK^2}\)không đổi hay \(\frac{1}{DI^2}+\frac{1}{DK^2}\)không đổi khi I chuyển đọng trên AB
(chú ý: ^ nghĩa là góc)
đặt góc IAD là D1; góc IDC là D2; góc CDL là D3
a) Ta có D1+D2=90độ
D2+D3=90độ
=>D1=D3
xét 2tam giác vuông IAD và DCL
Có D1=D3(CM trên)
AD=DC(cạnh hình vuông)
=> tam giác IAD=tam giác LCD(góc nhọn-cạnh góc vuông)
=>DL=DI
=> tam giác IDL cân tại D
b) xét tam giác vuông KDL có
DC là đường cao
=> 1/DC^2=(1/DK^2)+(1/DL^2) (1)
Mà DL=DI (2)
mà DC không đổi (3)
Từ (1),(2) và (3) =>DPCM