K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

Bạn tự vẽ hình nha

a, Ta có : HE // DM => \(\frac{HE}{DM}=\frac{AE}{EM}\) ( 1 )

EF // MC => \(\frac{EF}{MC}=\frac{AE}{EM}\) ( 2 )

Từ ( 1 ) và ( 2 ) => \(\frac{HE}{DM}=\frac{EF}{MC}\)

Mà DM = MC => HE = EF ( * )

Ta có : EF // DM => \(\frac{EF}{DM}=\frac{BF}{FM}\) ( 3 )

FN // MC => \(\frac{FN}{MC}=\frac{BF}{FM}\) ( 4 )

Từ ( 3 ) và ( 4 ) => \(\frac{EF}{DM}=\frac{FN}{MC}\)

Mà DM = MC => EF = FN ( ** )

Từ ( * ) và ( ** ) => HE = EF = FN

b, Ta có : DM = MC = \(\frac{CD}{2}=\frac{12}{2}=6\left(cm\right)\)

Ta có : HE // AB => \(\frac{HE}{AB}=\frac{DH}{HA}\) ( 5 )

HE // DM => \(\frac{DM}{HE}=\frac{DH}{AH}\) ( 6 )

Từ ( 5 ) và ( 6 ) => \(\frac{HE}{AB}=\frac{DM}{HE}\)

=> HE2 = AB.DM = 7,5.6 = 45

=> HE = \(3\sqrt{5}\left(cm\right)\)

=> HN = HE + EF + FN

Mặt khác : HE = EF = FN

=> HN = 3.HE = \(3.3\sqrt{5}=9\sqrt{5}\left(cm\right)\)

6 tháng 3 2018

20 tháng 4 2020

có m là trđ của cd rồi lại còn ef cắt bc tại m

a, xét tam giác DEM có AB // DM (gt) => ME/AE = DM/AB (ddl)

xét tam giác MFC có  MC // AB (gt) => MF/FB = CM/AB (đl)

có DM = CM do M là trung điểm của CD (gt)

=> ME/AE = MF/FB  xét tam giác ABM 

=> EF // AB (đl)

b, gọi EF cắt AD;BC lần lượt tại P và Q

xét tam giác ABD có PE // AB => PE/AB = DE/DB (đl)

xét tam giác DEM có DM // AB => DE/DB = ME/MA (đl)

xét tam giác ABM có EF // AB => EF/AB = ME/MA (đl)

=> PE/AB = EF/AB

=> PE = EF

tương tự cm được FQ = EF

=> PE = EF = FQ

c, Xét tam giác DAB có PE // AB  => PE/AB = DP/DA (đl)

xét tam giác ADM có PE // DM => PE/DM = AP/AD (đl) 

=> PE/AB + PE/DM = DP/AD + AP/AD

=> PE(1/AB + 1/DM) = 1                                  (1)

xét tam giác AMB có EF // AB => EF/AB = MF/MB (đl)

xét tam giác BDM có EF // DM => EF/DM = BF/BM (đl)

=> EF/AB + EF/DM = MF/MB + BF/BM

=> EF(1/AB + 1/DM) = 1                            (2)

xét tam giác ABC có FQ // AB => FQ/AB = CQ/BC (đl)

xét tam giác BMC có FQ // MC => FQ/MC = BQ/BC (đl)

=> FQ/AB + FQ/MC = CQ/BC + BQ/BC 

có MC = DM (câu a)

=> FQ(1/AB + 1/DM) = 1                            (3)

(1)(2)(3) => (1/AB + 1/DM)(PE + EF + FQ) = 3

=> PQ(1/AB + 1/DM) = 3

DM = 1/2 CD = 6

đến đây thay vào là ok

31 tháng 1 2022

- Hình vẽ:

undefined

a) - Xét △EDM có:

AB//DM (ABCD là hình thang có 2 đáy là AB và CD).

=>\(\dfrac{AE}{EM}=\dfrac{AB}{DM}\) (định lí Ta-let) (1).

- Xét △FCM có:

AB//CM (ABCD là hình thang có 2 đáy là AB và CD).

=>\(\dfrac{BF}{MF}=\dfrac{AB}{CM}\) (định lí Ta-let) (2).

- Từ (1) và (2) và \(CM=DM\) (M là trung điểm BC) suy ra:

\(\dfrac{AE}{EM}=\dfrac{BF}{MF}\).

- Xét △ABM có:

\(\dfrac{AE}{EM}=\dfrac{BF}{MF}\) (cmt)

=>\(EF\)//\(AB\) (định lí Ta-let đảo)nên\(EF\)//\(AB\)//\(CD\)

b) -Xét △ADM có: 

HE//DM (cmt).

=>\(\dfrac{HE}{DM}=\dfrac{AE}{AM}\) (định lí Ta-let). (3)

- Xét △ACM có:

EF//CM (cmt)

=>\(\dfrac{EF}{CM}=\dfrac{AE}{AM}\) (định lí Ta-let) (4)

- Từ (3) và (4) và \(DM=CM\) (M là trung điểm BC) suy ra: \(HE=EF\)

-Xét △BDM có: 

EF//DM (cmt).

=>\(\dfrac{EF}{DM}=\dfrac{BF}{BM}\)(định lí Ta-let). (5)

- Xét △BCM có:

NF//CM (cmt)

=>\(\dfrac{NF}{CM}=\dfrac{BF}{BM}\) (định lí Ta-let) (6)

- Từ (5) và (6) và \(CM=DM\) (M là trung điểm BC) suy ra: \(NF=EF\)

Mà ​\(HE=EF\) nên \(HE=EF=NF=\dfrac{1}{3}HN\).

c) -Ta có: ​\(\dfrac{HE}{DM}=\dfrac{AE}{AM}\) (cmt)

=>​\(\dfrac{DM}{HE}=\dfrac{AM}{AE}\).

=>\(\dfrac{DM}{HE}-1=\dfrac{EM}{AE}\) (7)

- Ta có: \(\dfrac{AE}{EM}=\dfrac{AB}{DM}\) nên ​\(\dfrac{EM}{AE}=\dfrac{DM}{AB}\). (8)

- Từ (7) và (8) suy ra:

\(\dfrac{DM}{HE}-1=\dfrac{DM}{AB}\)

=>\(\dfrac{DM}{HE}=\dfrac{DM}{AB}+1=\dfrac{DM+AB}{AB}\)

=>\(HE=\dfrac{AB.DM}{AB+DM}=\dfrac{7,5.\left(12.\dfrac{1}{2}\right)}{7,5+\left(12.\dfrac{1}{2}\right)}=\dfrac{10}{3}\)

=>\(HN=3HE=3.\dfrac{10}{3}=10\) (cm).

 

​​​​

 

 

 

11 tháng 3 2020

A B C D M E F H N

a, MC // AB  => MC/AB = MF/FB (hệ quả)

MB // AB => BM/AB = ME/EA (hệ quả)

Có BM = CM do M là trung điểm của BC (gt)

=> MF/FB = ME/EA

=> EF // AB

b, có HF // BM => AE/EM = HE/BM (hệ quả)

EF // MC => AE/EM = EF/MC (hệ quả)

BM = MC  (Câu a)

=>  HE = EF (1)

có EF // BM => EF/BM = BF/FM  (hệ quả)

FN // MC => FN/MC = FB/FM (hệ quả)

BM = CM (Câu a)

=> EF = FN và (1)

=> HE = EF = FN

a: Xét ΔEAB và ΔEMD có

góc EAB=góc EMD

góc AEB=góc MED

=>ΔEAB đồng dạng vơi ΔEMD

=>EM/EA=AB/MD=AB/MC

Xet ΔFAB và ΔFCM có

góc FAB=góc FCM

góc AFB=góc CFM

Do đó: ΔFAB đồng dạng với ΔFCM

=>FB/FM=AB/CM

=>FM/FB=CM/AB=DM/AB=ME/EA

=>EF//AB

b: Xet ΔBMC có FN//MC

nên FN/MC=BN/BC

=>FN/MD=AH/AD

Xét ΔADM có HE//DM

nên HE/DM=AH/AD

Xét ΔBDC có EN//DC

nên EN/DC=BN/BC=AH/AD

=>(EF+FN)/(2DM)=AH/AD=HE/DM=FN/MD

=>(EF+FN)/2=HE=FN

=>EF+FN=2FN

=>FN=EF=HE