K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

Đầu tiên bạn vẽ hình ra. 
*Vì đây là hình thang cân nên ta có những điều sau: 
-AB//CD 
-2 đường chéo bằng nhau : AC=BD=CD (theo giả thiết) 
-2 cạnh bên bằng nhau: AD=BC=AB (theo giả thiết) 
-tổng 2 góc đối nhau = 180 độ 
-góc A=B ; góc C=D 
Đặt các góc:ADB=D1 ; BDC=D2 ;ACB=C1 ; ACD=C2 ; DBC=B1 ; ABD=B2 ; DAC=A1 ; CAB = A2 
*AB=AD suy ra tam giác ADB cân tại A nên góc D1=B2. Mặt khác vì AB//CD nên góc D2 = B2 (sole trong) 
=>ADB=ABD=BDC => D1=D2 
*AB=BC suy ra tam giác ABC cân tại B nên góc BAC=BCA. tương tự gocA2=C2 (sole trong) 
=>A2=C1=C2 =>C1=C2 
* Vì gócC=D nên suy ra C1=C2=D1=D2 
* Có C2=D1 và lại có D1=B2 (đã chứng minh ở trên) nên C2=B2 (1) 
* Xét tam giác BDC có BD=CD (theo giả thiết) nên BDC cân suy ra B1 = C = C1+C2 (2) 
* Từ (1) và (2) suy ra B=B1+B2 = C1 + C2 + C2 = 3C2 = 3D2 (vì C2=D2 - CM trên thêm nữa góc D= D1 + D2 = 2D2 )
* Mà góc B+D = 180* nên suy ra 3.D2 + 2.D2 = 180* <=> 5.D2=180* <=> D2=36* 
Suy ra D = C = 36 x 2 = 72* 
A = B = 36 x 3 = 108* 

Hí.Mình làm xong rồi. Vì không có hình nên nhìn hơi khó hiểu vì vậy bạn cần vẽ hình giống như mình đã quy ước thì ới ra kết quả như trên. Chẳng biết có đúng không nhưng mình cũng đã nghĩ 1 hồi lâu rồi đấy!Chúc bạn học giỏi hem!

2 tháng 9 2016

Vì ABCD là hình thang cân nên AB=AD=BC

Tam giác ACD cân tạ C, ta có: góc DAC=góc ADC

Tam giác ABC cân tại B, ta có: góc BAC= góc ACB

Mặt khác: góc ACB= góc ACD (vì góc ACD= góc BAC (so le trong))= gócBCD/2 = góc ADC/2 

Ta có: góc DAB + góc ADC= góc DAC+góc BAC+góc ADC= 2.góc ADC+góc ACD/2=180 độ (vì AB//CD)→ góc ADC=72 độ 

2 tháng 9 2016

Uhm! Câu này khó đấy ! Mình cứ làm không biết có đúng không nhé. Hi 
Đầu tiên bạn vẽ hình ra. 
*Vì đây là hình thang cân nên ta có những điều sau: 
-AB//CD 
-2 đường chéo bằng nhau : AC=BD=CD (theo giả thiết) 
-2 cạnh bên bằng nhau: AD=BC=AB (theo giả thiết) 
-tổng 2 góc đối nhau = 180 độ 
-góc A=B ; góc C=D 
Đặt các góc:ADB=D1 ; BDC=D2 ;ACB=C1 ; ACD=C2 ; DBC=B1 ; ABD=B2 ; DAC=A1 ; CAB = A2 
*AB=AD suy ra tam giác ADB cân tại A nên góc D1=B2. Mặt khác vì AB//CD nên góc D2 = B2 (sole trong) 
=>ADB=ABD=BDC => D1=D2 
*AB=BC suy ra tam giác ABC cân tại B nên góc BAC=BCA. tương tự gocA2=C2 (sole trong) 
=>A2=C1=C2 =>C1=C2 
* Vì gócC=D nên suy ra C1=C2=D1=D2 
* Có C2=D1 và lại có D1=B2 (đã chứng minh ở trên) nên C2=B2 (1) 
* Xét tam giác BDC có BD=CD (theo giả thiết) nên BDC cân suy ra B1 = C = C1+C2 (2) 
* Từ (1) và (2) suy ra B=B1+B2 = C1 + C2 + C2 = 3C2 = 3D2 (vì C2=D2 - CM trên thêm nữa góc D= D1 + D2 = 2D2 ) 
* Mà góc B+D = 180* nên suy ra 3.D2 + 2.D2 = 180* <=> 5.D2=180* <=> D2=36* 
Suy ra D = C = 36 x 2 = 72* 
A = B = 36 x 3 = 108* 

26 tháng 7 2017

*Vì đây là hình thang cân nên ta có những điều sau: 
-AB//CD 
-2 đường chéo bằng nhau : AC=BD=CD (theo giả thiết) 
-2 cạnh bên bằng nhau: AD=BC=AB (theo giả thiết) 
-tổng 2 góc đối nhau = 180 độ 
-góc A=B ; góc C=D 
Đặt các góc:ADB=D1 ; BDC=D2 ;ACB=C1 ; ACD=C2 ; DBC=B1 ; ABD=B2 ; DAC=A1 ; CAB = A2 
*AB=AD suy ra tam giác ADB cân tại A nên góc D1=B2. Mặt khác vì AB//CD nên góc D2 = B2 (sole trong) 
=>ADB=ABD=BDC => D1=D2 
*AB=BC suy ra tam giác ABC cân tại B nên góc BAC=BCA. tương tự gocA2=C2 (sole trong) 
=>A2=C1=C2 =>C1=C2 
* Vì gócC=D nên suy ra C1=C2=D1=D2 
* Có C2=D1 và lại có D1=B2 (đã chứng minh ở trên) nên C2=B2 (1) 
* Xét tam giác BDC có BD=CD (theo giả thiết) nên BDC cân suy ra B1 = C = C1+C2 (2) 
* Từ (1) và (2) suy ra B=B1+B2 = C1 + C2 + C2 = 3C2 = 3D2 (vì C2=D2 - CM trên thêm nữa góc D= D1 + D2 = 2D2 ) 
* Mà góc B+D = 180* nên suy ra 3.D2 + 2.D2 = 180* <=> 5.D2=180* <=> D2=36* 
Suy ra D = C = 36 x 2 = 72* 
A = B = 36 x 3 = 108* 

7 tháng 8 2016

Đầu tiên bạn vẽ hình ra. 
*Vì đây là hình thang cân nên ta có những điều sau: 
-AB//CD 
-2 đường chéo bằng nhau : AC=BD=CD (theo giả thiết) 
-2 cạnh bên bằng nhau: AD=BC=AB (theo giả thiết) 
-tổng 2 góc đối nhau = 180 độ 
-góc A=B ; góc C=D 
Đặt các góc:ADB=D1 ; BDC=D2 ;ACB=C1 ; ACD=C2 ; DBC=B1 ; ABD=B2 ; DAC=A1 ; CAB = A2 
*AB=AD suy ra tam giác ADB cân tại A nên góc D1=B2. Mặt khác vì AB//CD nên góc D2 = B2 (sole trong) 
=>ADB=ABD=BDC => D1=D2 
*AB=BC suy ra tam giác ABC cân tại B nên góc BAC=BCA. tương tự gocA2=C2 (sole trong) 
=>A2=C1=C2 =>C1=C2 
* Vì gócC=D nên suy ra C1=C2=D1=D2 
* Có C2=D1 và lại có D1=B2 (đã chứng minh ở trên) nên C2=B2 (1) 
* Xét tam giác BDC có BD=CD (theo giả thiết) nên BDC cân suy ra B1 = C = C1+C2 (2) 
* Từ (1) và (2) suy ra B=B1+B2 = C1 + C2 + C2 = 3C2 = 3D2 (vì C2=D2 - CM trên thêm nữa góc D= D1 + D2 = 2D2 ) 
* Mà góc B+D = 180* nên suy ra 3.D2 + 2.D2 = 180* <=> 5.D2=180* <=> D2=36* 
Suy ra D = C = 36 x 2 = 72* 
A = B = 36 x 3 = 108* 

7 tháng 8 2016

-AB//CD 
-2 đường chéo bằng nhau : AC=BD=CD (theo giả thiết) 
-2 cạnh bên bằng nhau: AD=BC=AB (theo giả thiết) 
-tổng 2 góc đối nhau = 180 độ 
-góc A=B ; góc C=D 
Đặt các góc:ADB=D1 ; BDC=D2 ;ACB=C1 ; ACD=C2 ; DBC=B1 ; ABD=B2 ; DAC=A1 ; CAB = A2 
*AB=AD suy ra tam giác ADB cân tại A nên góc D1=B2. Mặt khác vì AB//CD nên góc D2 = B2 (sole trong) 
=>ADB=ABD=BDC => D1=D2 
*AB=BC suy ra tam giác ABC cân tại B nên góc BAC=BCA. tương tự gocA2=C2 (sole trong) 
=>A2=C1=C2 =>C1=C2 
* Vì gócC=D nên suy ra C1=C2=D1=D2 
* Có C2=D1 và lại có D1=B2 (đã chứng minh ở trên) nên C2=B2 (1) 
* Xét tam giác BDC có BD=CD (theo giả thiết) nên BDC cân suy ra B1 = C = C1+C2 (2) 
* Từ (1) và (2) suy ra B=B1+B2 = C1 + C2 + C2 = 3C2 = 3D2 (vì C2=D2 - CM trên thêm nữa góc D= D1 + D2 = 2D2 ) 
* Mà góc B+D = 180* nên suy ra 3.D2 + 2.D2 = 180* <=> 5.D2=180* <=> D2=36* 
Suy ra D = C = 36 x 2 = 72* 
A = B = 36 x 3 = 108* 

* là độ nha!!!

5 tháng 10 2021

\(a,\) Vì \(AB=AD\) nên tam giác ABD cân tại A

Do đó \(\widehat{ADB}=\widehat{ABD}\)

Mà \(\widehat{ABD}=\widehat{BDC}\left(so.le.trong.vì.AB//CD\right)\)

\(\Rightarrow\widehat{ADB}=\widehat{BDC}\)

Vậy BD là p/g \(\widehat{ADC}\)

\(b,\) Vì ABCD là hình thang cân và BD là p/g nên \(\widehat{ADB}=\widehat{BDC}=\dfrac{1}{2}\widehat{ADC}=\dfrac{1}{2}\widehat{BCD}\)

Mà \(\widehat{BDC}+\widehat{BCD}=90^0\left(\Delta BDC\perp B\right)\)

\(\Rightarrow\dfrac{1}{2}\widehat{BCD}+\widehat{BCD}=90^0\Rightarrow\widehat{BCD}=60^0\)

\(\Rightarrow\widehat{BCD}=\widehat{ADC}=60^0\)

Ta có \(\widehat{BCD}+\widehat{ABC}=180^0\left(trong.cùng.phía.vì.AB//CD\right)\)

\(\Rightarrow\widehat{ABC}=\widehat{BAD}=180^0-60^0=120^0\)

1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và...
Đọc tiếp

1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.

2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang

3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.

4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và BD=BC.

a) tính các góc của hình thang

b) biết AB=5 cm. tính CD

5.Cho hình thang vuông ABCD có góc A= góc D = 900, đường chéo BD vuông góc với cạnh bên BC và BD=BC.

a) tính các góc của hình thang

b) biết AB=3cm. tính độ dài các cạnh BC,CD.

6. Hình thang cân ABCD có AB//CD, AB<CD. Kẻ hai đường cao AH, BK.

a) chứng minh ằng HD=KC.

7. Cho tam giác cân ABC (AB=AC), phân giác BD,CE.

a) tú giác BEDC là hình gì?Vì sao?

b)Chứng minh BE=ED=DC.

c) biết góc A=500. Tính các góc của tứ giác BEDC.

8. cho tam giác đều ABC, hai đường cao BN,CM

a) chứng minh tứ giác BMNC là hình thang cân

b) Tính chu vi của hình thang BMNC là hình thang cân

3
7 tháng 6 2015

dài thế bạn nản luôn oi

7 tháng 6 2015

làm đc câu ào thì đc đâu nhất thiết phải làm hết chỉ là mik đưa mấy bài đóa để mấy bn chỉ đc bài nào thì chỉ thôi mà

Xét tứ giác ABCD có 

AB=BC=CD=AD

nên ABCD là hình thoi

Suy ra: \(\widehat{A}=\widehat{C}\)

mà \(\widehat{A}=\widehat{B}\)

nên \(\widehat{B}=\widehat{C}=90^0\)

\(\Leftrightarrow\widehat{A}=\widehat{D}=90^0\)