K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

a) Hình thang ABEC (AB // CE) có hai cạnh bên AC, BE song song nên chúng bằng nhau:

AC = BE (1)

Theo giả thiết AC = BD (2)

Từ (1) và (2) suy ra BE = BD do đó tam giác BDE cân.

b) Ta có AC // BE suy ra = (3)

∆BDE cân tại B (câu a) nên = (4)

Từ (3) và (4) suy ra =

Xét ∆ACD và ∆BCD có AC = BD (gt)

= (cmt)

CD cạnh chung

Nên ∆ACD = ∆BDC (c.g.c)

c) ∆ACD = ∆BDC (câu b)

Suy ra

Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.

21 tháng 4 2017

Bài giải:

a) Hình thang ABEC (AB // CE) có hai cạnh bên AC, BE song song nên chúng bằng nhau:

AC = BE (1)

Theo giả thiết AC = BD (2)

Từ (1) và (2) suy ra BE = BD do đó tam giác BDE cân.

b) Ta có AC // BE suy ra = (3)

∆BDE cân tại B (câu a) nên = (4)

Từ (3) và (4) suy ra =

Xét ∆ACD và ∆BCD có AC = BD (gt)

= (cmt)

CD cạnh chung

Nên ∆ACD = ∆BDC (c.g.c)

c) ∆ACD = ∆BDC (câu b)

Suy ra

Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.


24 tháng 9 2017

Bạn đăng bài trong sgk à.

20 tháng 10 2017

như vậy mà cũng hỏi

12 tháng 2 2020

Xét △ABD và △BAC có :

   AD = BC (gt)

   AB chung

   ^A = ^B (gt)

\(\Rightarrow\)△ABD = △BAC (cgc)

\(\Rightarrow\)^ADB = ^ BCA

Mà ^ADC = ^BCD

\(\Rightarrow\)^ODC = ^OCD

Lại có : AC ⊥ BD

\(\Rightarrow\)△OCD vuông cân tại O

Chứng minh tương tự với △OAB :

\(\Rightarrow\)ĐPCM

12 tháng 2 2020

Áp dụng định lí Pitago vào  △OAB vuông tại O có :

Có: OA2  + OB2 = AB2

=> 2OA2 = 16

=> OA = \(2\sqrt{2}\)cm

Tương tự: OD = \(4\sqrt{2}\)cm

Kẻ MN đi qua O và vuông góc với AB(tại M) và CD(tại N)

=> M là trung điểm AB ; N là trung điểm CD (vì ABCD là hình thang cân)

Có: OM2 = OA2 - AM2 = \(\left(2\sqrt{2}\right)^2-2^2\) = 8 - 4 = 4 cm

=> OM = 2cm

Tương tự chứng minh :

=> ON = 4 cm

=> MN = 6 cm

Vậy SABCD = \(\frac{\left(4+8\right).6}{2}=36\)  cm2

5 tháng 7 2018

bạn vào câu tương tự và tìm câu hỏi của bạn NGUYỄN TẤT ANH QUÂN nha

5 tháng 7 2018

có câu lời giải đầy đủ!!Vào câu tương tự của bạn Nguyễn Tất Anh Quân 

có lời giải liền

21 tháng 8 2019

giup mình với mai đi hc rồi

19 tháng 6 2020

A B E C D 1 1

a) Hình thang ABEC ( AB // CE ) có hai cạnh bên AC, BE song song nên chúng bằng nhau: AC = BE     (1)

Theo giả thiết AC = BD     (2)

Từ (1) và (2) suy ra BE = BD do đó \(\Delta BDE\)cân

b) Do AC // BE nên \(\widehat{E}=\widehat{C_1}\left(3\right)\)

Mà tam giác BDE cân tại B ( câu a ) nên \(\widehat{E}=\widehat{D_1}\left(4\right)\)

Từ (3)(4) => \(\widehat{D_1}=\widehat{C_1}\)

* Xét 2 tam giác : ACD và BDC có :

DC chung

AC = BD ( gt )

\(\widehat{C_1}=\widehat{D_1}\left(cmt\right)\)

\(\Rightarrow\Delta ACD=\Delta BDC\left(c-g-c\right)\)

c) Theo ( c/m câu b ) ta có :

\(\Delta ACD=\Delta BDC\)

nên \(\widehat{ADC}=\widehat{BCD}\)( 2 góc tương ứng )

Vậy hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.