K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) Trong (SAB) kẻ \(AD \bot SB\) tại D.

\(\left. \begin{array}{l}BC \bot AD\\SB \bot AD\\BC \cap SB = \left\{ B \right\}\end{array} \right\} \Rightarrow AD \bot \left( {SBC} \right) \Rightarrow \)D là hình chiếu của A trên (SBC).

b) A là hình chiếu của S trên (ABC) \(\left( {SA \bot \left( {ABC} \right)} \right)\)

C là hình chiếu của C trên (ABC)

\( \Rightarrow \) AC là hình chiếu của SC trên (ABC)

\( \Rightarrow \) \(\left( {SC,\left( {ABC} \right)} \right) = \left( {SC,AC} \right) = \widehat {SCA}\)

Xét tam giác ABC vuông tại B có

\(A{C^2} = A{B^2} + B{C^2} = 2{a^2} \Rightarrow AC = a\sqrt 2 \)

Xét tam giác SAC vuông tại A có

\(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{a}{{a\sqrt 2 }} = \frac{1}{{\sqrt 2 }} \Rightarrow \widehat {SCA} = \arctan \frac{1}{{\sqrt 2 }}\)

Vậy \(\left( {SC,\left( {ABCD} \right)} \right) = \arctan \frac{1}{{\sqrt 2 }}\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Ta có SA \( \bot \) (ABC) nên A là hình chiếu của S trên (ABC)

b) A là hình chiếu của S trên (ABC)

B là hình chiếu của B trên (ABC)

C là hình chiếu của C trên (ABC)

\( \Rightarrow \) Tam giác ABC là hình chiếu của tam giác SBC.

c)  B là hình chiếu của C trên (SAB)

S, B là hình chiếu của chính nó trên (SAB)

\( \Rightarrow \) SB là hình chiếu của tam giác SBC trên (SAB)

NV
2 tháng 4 2023

a.

Do \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AB\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow BC\perp SB\)

b.

\(SA\perp\left(ABC\right)\Rightarrow AC\) là hình chiếu vuông góc của SC lên (ABC)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABC)

\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)

\(\Rightarrow tan\widehat{SCA}=\dfrac{SA}{AC}=1\Rightarrow\widehat{SCA}=45^0\)

28 tháng 10 2018

17 tháng 1 2018

Chọn C

Xác định được 

Khi đó ta tính được 

Trong mặt phẳng (ABC) lấy điểm D sao cho ABCD là hình chữ nhật => AB//(SCD) nên

Từ (1) và (2) suy ra 

Xét tam giác vuông SAD có

20 tháng 11 2018

Giải bài 2 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 2 trang 119 sgk Hình học 11 | Để học tốt Toán 11

23 tháng 2 2021

Gọi HH là trung điểm của BCBC suy ra

AH=BH=CH=1\2BC=a\2.

Ta có: SH⊥(ABC)⇒SH=√SB2−BH2=a√3\2

ˆ(SA,(ABC))=ˆ(SA,HA)=ˆSAH=α

⇒tanα=SH\AH=√3⇒α=60∘