Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
A B C D M E H K I O
a, Gọi O là giao điểm 2 đường chéo của hình chữ nhật ABCD
=> O là trung điểm của BD và AC
Xét tam giác ACE có:
O là trung điểm của AC
M là trung điểm của AE ( gt )
=> OM là đường trung bình của tam giác ACE
=> OM // CE
hay BD // CE
=> ^BDC = ^ECK ( 2 góc đồng vị ) (1)
Vì O là trung điểm của BD và AC
=> OD = BD/2 và OC = AC/2
Mà BD = AC ( ABCD là hình chữ nhật )
=> OD = OC
=> tam giác DOC cân tại O
=> ^BDC = ^ACD (tc) (2)
Xét tứ giác HEKC có:
^EHC = 90o
^HCK = 90o
^EKC = 90o
=> tứ giác HEKC là hình chữ nhật ( dh1)
Gọi I là giao điểm 2 đường chéo của hình chữ nhật HEKC
=> I là trung điểm của CE và HK
=> IC = CE/2 và IK = HK/2
Mà CE = HK ( HEKC là hình chữ nhật )
=> IC = IK
=> tam giác ICK cân tại I
=> ^ECK = ^IKC (tc) (3)
Từ (1) (2) và (3) => ^ACD = ^IKC
Mà 2 góc này ở vị trí đồng vị
nên AC // HK ( đpcm )
b, Xét tam giác ACE có:
I là trung điểm của CE
M là trung điểm của AE (gt)
=> IM là đường trung bình của tam giác ACE
=> IM // AC
Mà HK // AC ( cm ở ý a ) và H, I, K thẳng hàng
nên M, H, K thẳng hàng ( đpcm )
A B D C M K H F E
xét tg AMCH có: E là t/đ của của MH và AC => tg AMCH là hbh=> AM//HC
xét tg BMDK có: F là t/đ của MK và BD => tg BMDK là hbh => BM//DK
Mà M thuộc AB (gt) => AB // HC//DK. (1)
Mặt khác : AB // DC (2)
Từ (1),(2)=> D,K,H,C thẳng hàng (tiên đề Ơ -clit)
b) do tg AMCH là hbh (c/m câu a)=> AM=CH (3)
Do tg BMDK là hbh (.................)=> BM=DK (4)
Từ(3),(4)=> AM+BM=CH+DK
=> AB=CH+DK (5)
Mặt khác: Dk+KH+HC=DC=> KH=DC-(DK+HC) (6)
Từ (5),(6),=> HK=DC-AB
Mà hthang ABCD cố định nên AB và DC ko đổi => DC-AB ko đổi => HK ko đổi
Vậy khi M di chuyển trên AB thì độ dài HK ko đổi