Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Lấy $H$ là trung điểm $AB$ thì do $SAB$ cân tại $S$ nên $SH\perp BH$
$BH$ là giao tuyến của $(SAB), (ABCD)$; (SAB)\perp (ABCD)$ nên $SH\perp (ABCD)$
$\Rightarrow (SC, (ABCD))=(SC, CH)=\widehat{SCH}=45^0$
$\Rightarrow SH=CH=\sqrt{BC^2+BH^2}=\sqrt{(2a)^2+(\frac{a}{2})^2}=\frac{\sqrt{17}}{2}a$
\(V_{S.ABCD}=\frac{1}{3}.SH.S_{ABCD}=\frac{1}{3}.\frac{\sqrt{17}}{2}a.a.2a=\frac{\sqrt{17}}{3}a^3\)
Đáp án D.
Hướng dẫn giải:
Kẻ S H ⊥ A B ⇒ S H ⊥ ( A B C D )
Do ∆ S B D vuông tại S nên H B H D = S B S D 2 = 1 3
Ta có B D = A B 2 + A D 2 = a 7
⇒ H D = 3 a 7 4
Mặt khác
Ta có S A B C D = A B . A D = 2 a 3 2
V S . A B C D = 1 3 S H . S A B C D = a 7 2 2
Khá là dài, mình tìm ra được bằng \(\dfrac{3\sqrt3}{64}a^3\)
\(SA\perp\left(ABCD\right)\Rightarrow SA\perp AC\Rightarrow\Delta SAC\) vuông cân tại A
\(\Rightarrow SA=AC=\dfrac{SC}{\sqrt[]{2}}=2a\sqrt{2}\)
ABCD là hình vuông \(\Rightarrow AB=\dfrac{AC}{\sqrt{2}}=2a\)
\(\Rightarrow V=\dfrac{1}{3}SA.AB^2=\dfrac{8a^3\sqrt{2}}{3}\)
\(\alpha=\widehat{BSA}\Rightarrow tan\alpha=\dfrac{AB}{SA}=\dfrac{1}{\sqrt{2}}\Rightarrow\alpha\approx35^016'\)