K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a) (SAD) ∩ (SBC) = SE

b) Trong (SBE): MN ∩ SE = F

Trong (SAE): AF ∩ SD = P là điểm cần tìm

c) Thiết diện là tứ giác AMNP

TenAnh1 A = (-0.14, -7.4) A = (-0.14, -7.4) A = (-0.14, -7.4) B = (14.46, -7.36) B = (14.46, -7.36) B = (14.46, -7.36) C = (-3.74, -5.6) C = (-3.74, -5.6) C = (-3.74, -5.6) D = (11.62, -5.6) D = (11.62, -5.6) D = (11.62, -5.6)

26 tháng 10 2023

S A B C D M N O G K H P Q

a/

Ta có

\(S\in\left(SAC\right);S\in\left(SBD\right)\)

Trong mp (ABCD) gọi O là giao của AC và BD

\(O\in AC\Rightarrow O\in\left(SAC\right);O\in BD\Rightarrow O\in\left(SBD\right)\)

\(\Rightarrow SO\in\left(SAC\right)\) và \(SO\in\left(SBD\right)\) => SO là giao tuyến của (SAC) và (SBD)

b/

Trong mp (ABCD) Từ G dựng đường thẳng // AC cắt BC tại K

Xét tg SAC có

SM=AM (gt); SN=CN (gt) => MN là đường trung bình của tg SAC

=> MN//AC

Mà GM//AC

=> MN//GK mà \(G\in\left(GMN\right)\Rightarrow GK\in\left(GMN\right)\) (Từ 1 điểm trong mặt phẳng chỉ dựng được duy nhất 1 đường thẳng thuộc mặt phẳng đó và // với 1 đường thẳng cho trươc thuộc mặt phẳng)

\(\Rightarrow K\in\left(GMN\right);K\in BC\) => K llaf giao của BC với (GMN)

c/

Ta có

\(KN\in\left(GMN\right);KN\in\left(SBC\right)\) => KN là giao tuyến của (GMN) với (SBC)

Trong (ABCD) KG cắt AB tại H

\(KG\in\left(GMN\right)\Rightarrow KH\in\left(GMN\right)\)

\(KG\in\left(ABCD\right)\Rightarrow KH\in\left(ABCD\right)\)

=> KH là giao tuyến của (GMN) với (ABCD)

Ta có 

\(HM\in\left(SAB\right);HM\in\left(GMN\right)\) => HM là giao tuyến của (GMN) với (SAB)

Trong mp(SAC) gọi P là giao của SO với MN

\(P\in MN\Rightarrow P\in\left(GMN\right)\)

Trong mp(SBD) Nối G với P cắt SD tại Q

\(\Rightarrow GP\in\left(GMN\right)\Rightarrow Q\in GMN\)

\(\Rightarrow MQ\in\left(GMN\right)\) mà \(MQ\in\left(SAD\right)\) => MQ là giao tuyến của (GMN) với (SAD)

Ta có

\(NQ\in\left(GMN\right);NQ\in\left(SCD\right)\) => NQ là giao tuyến của (GMN) với (SCD)

=> thiết diện của hình chóp bị cắt bởi (GMN) là đa giác HMQNK

 

 

 

 

9 tháng 6 2018

Giải bài 2 trang 77 sgk Hình học 11 | Để học tốt Toán 11

a) Tìm thiết diện :

Trong mp(ABCD), gọi F = AD ∩ PN và E = AB ∩ PN

Trong mp(SAD), gọi Q = MF ∩ SD

Trong mp(SAB), gọi R = ME ∩ SB

Nối PQ, NR ta được các đoạn giao tuyến của mp(MNP) với các mặt bên và mặt đáy của hình chóp là MQ, QP, PN, NR, RM

Vậy thiết diện cắt bởi mặt phẳng (MNP) là ngũ giác MQPNR.

b) Tìm SO ∩ (MNP). Gọi H là giao điểm của AC và PN .

Trong (SAC), SO ∩ MH = I

Giải bài 2 trang 77 sgk Hình học 11 | Để học tốt Toán 11

Vậy I = SO ∩ (MNP).

20 tháng 12 2021
a. M là điểm chung thứ nhất của (MCB) và (SAD). Ta có: CB // AD. Vậy giao tuyến của (MCB) và (SAD) là đường thẳng d kẻ từ M và song song với AD b. Trong (SAD): d \cap∩ SD = F. Vậy thiết diện cần tìm là hình thang MFCB.
7 tháng 11 2019

Giải bài 3 trang 77 sgk Hình học 11 | Để học tốt Toán 11

a) Tìm (SAD) ∩ (SBC)

Gọi E= AD ∩ BC. Ta có:

Giải bài 3 trang 77 sgk Hình học 11 | Để học tốt Toán 11

Do đó E ∈ (SAD) ∩ (SBC).

mà S ∈ (SAD) ∩ (SBC).

⇒ SE = (SAD) ∩ (SBC)

b) Tìm SD ∩ (AMN)

+ Tìm giao tuyến của (SAD) và (AMN) :

Trong mp (SBE), gọi F = MN ∩ SE :

F ∈ SE ⊂ (SAD) ⇒ F ∈ (SAD)

F ∈ MN ⊂ (AMN) ⇒ F ∈ (AMN)

⇒ F ∈ (SAD) ∩ (AMN)

⇒ AF = (SAD) ∩ (AMN).

+ Trong mp (SAD), gọi AF ∩ SD = P

⇒ P = SD ∩ (AMN).

c) Tìm thiết diện với mp(AMN):

(AMN) ∩ (SAB) = AM;

(AMN) ∩ (SBC) = MN;

(AMN) ∩ (SCD) = NP

(AMN) ∩ (SAD) = PA.

⇒ Thiết diện cần tìm là tứ giác AMNP.

21 tháng 10 2023

a: Chọn mp(SBD) có chứa BM

\(O\in BD\subset\left(SBD\right);O\in AC\subset\left(SAC\right)\)

Do đó: \(O\in\left(SBD\right)\cap\left(SAC\right)\)

mà \(S\in\left(SBD\right)\cap\left(SAC\right)\)

nên \(\left(SBD\right)\cap\left(SAC\right)=SO\)

Gọi E là giao điểm của SO với BM

=>E là giao điểm của BM với mp(SAC)

b: \(M\in SD\subset\left(SAD\right);M\in\left(MAC\right)\)

=>\(M\in\left(SAD\right)\cap\left(MAC\right)\)

mà \(A\in\left(MAC\right)\cap\left(SAD\right)\)

nên \(\left(MAC\right)\cap\left(SAD\right)=AM\)

NV
22 tháng 12 2022

Qua S kẻ đường thẳng d song song AD (và BC)

Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\cap\left(SBC\right)\\AD||BC\\AD\in\left(SAD\right)\\BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow\) giao tuyến của (SAD) và (SBC) là đường thẳng qua S và song song AD, BC

\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)

9 tháng 12 2021

9 tháng 12 2021

NV
21 tháng 12 2022

a.

Trong mp (ABCD), kéo dài AD và BC cắt nhau tại E

\(\left\{{}\begin{matrix}E\in AD\in\left(SAD\right)\\E\in BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow E\in\left(SAD\right)\cap\left(SBC\right)\)

\(\Rightarrow SE=\left(SAD\right)\cap\left(SBC\right)\)

b.

Gọi O là giao điểm AC và BD \(\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)

Trong mp (SBD), nối DM cắt SO tại I

\(\left\{{}\begin{matrix}I\in SO\in\left(SAC\right)\\I\in DM\end{matrix}\right.\)

\(\Rightarrow I=DM\cap\left(SAC\right)\)

c.

Gọi F là trung điểm SA \(\Rightarrow FM\) là đường trung bình tam giác SAB

\(\Rightarrow FM||AB\Rightarrow FM||CD\)

Mà \(M\in\left(MCD\right)\Rightarrow F\in\left(MCD\right)\)

\(\Rightarrow\) Tứ giác CDFM là thiết diện của (MCD) và chóp

NV
21 tháng 12 2022

loading...

NV
23 tháng 10 2021

undefined

NV
23 tháng 10 2021

a.

Nối BN kéo dài cắt AD tại E

\(\left\{{}\begin{matrix}E\in\left(BMN\right)\\E\in\left(SAD\right)\end{matrix}\right.\) \(\Rightarrow E=\left(BMN\right)\cap\left(SAD\right)\)

\(\left\{{}\begin{matrix}M\in SA\in\left(SAD\right)\\M\in\left(BMN\right)\end{matrix}\right.\) \(\Rightarrow M=\left(BMN\right)\cap\left(SAD\right)\)

\(\Rightarrow EM=\left(BMN\right)\cap\left(SAD\right)\)

b.

Gọi F là giao điểm EM và SD

Trong mp (SCD), nối FN kéo dài cắt SC kéo dài tại G

\(\Rightarrow G=SC\cap\left(BMN\right)\)