K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 6 2019

Công thức tính nhanh thể tích tứ diện khi biết các góc tại 1 đỉnh:

\(V=\frac{SA.SB.SC}{6}\sqrt{1+2cos\widehat{ASB}.cos\widehat{BSC}.cos\widehat{CSA}-cos^2\widehat{ASB}-cos^2\widehat{BSC}-cos^2\widehat{CSA}}\)

\(=\frac{6}{6}\sqrt{1+2.\frac{1}{2}.\left(-\frac{1}{2}\right).0-\left(\frac{1}{2}\right)^2-\left(-\frac{1}{2}\right)^2}=\frac{\sqrt{2}}{2}\)

23 tháng 12 2019

Chọn A

Trên cạnh SB, SC lần lượt lấy các điểm M, N thỏa mãn SM = SN = 1.

Ta có AM = 1, AN =  2 , MN = 3

=> tam giác AMN vuông tại A

Hình chóp S.AMN có SA = SM = SN = 1.

 => hình chiếu của S trên (AMN) là tâm I của đường tròn ngoại tiếp tam giác AMN, ta có I là trung điểm của MN

Trong  ∆ SIM,

Ta có  

13 tháng 8 2016

+)Gọi H là chân đường cao hạ từ A - -> BC 
Tam giác AHC vuông tại H nên 
AH = √(a² -a²/4) = a√3/2 
Diện tích tam giác ABC là S(ABC) = 1/2.AH.BC= 1/2.a²√3/2 
(dvdt) 
+)Từ S hạ SK ┴ AH , Kết hợp AH ┴ BC ta có SK ┴ (ABC) 
Hay SK là đường cao của hình chóp đều SABC 
+) Bài cho góc giữa các mặt bên với đáy là 60 độ nên 
góc giữa (SH,HK) = 60 độ 
Tam giác vuông SKH có SK = HK.tan(60) 
Tam giác vuông BKH có HK = a/2.tan(30) = a√3/6 
- - > SK = a√3/6.tan(60) = a/2 
Vậy V(SABC) =1/3.SK.S(ABC) = 1/3.a/2.1/2.a²√3/2 
= a³√3/24 (dvtt)

23 tháng 1 2019

27 tháng 9 2017

Chọn đáp án B.

Ta có:  S A ⊥ S B S A ⊥ S C ⇒ S A ⊥ ( S B C )

Vì vậy áp dụng công thức cho trường hợp khối chóp có cạnh bên vuông góc đáy có:

 

5 tháng 11 2019

24 tháng 12 2016

Chọn điểm B' và C' lần lượt thuộc SB và SC sao ctho SA=SB'=SC'=3

Thấy ngay các tam giác SAB', SB'C', SAC', AB'C' đều

suy ra tứ diện SAB'C' là tứ diện đều, cạnh bằng 3

Dễ dàng tính được \(V_{SAB'C'}=\frac{9\sqrt{2}}{4}\)

 

Dùng tỷ lệ thể tích: \(\frac{V_{S.ABC}}{V_{S.AB'C'}}=\frac{SA}{SA}\cdot\frac{SB}{SB'}\cdot\frac{SC}{SC'}=1\cdot\frac{6}{3}\cdot\frac{9}{3}=6\Rightarrow V_{S.ABC}=\frac{27\sqrt{3}}{2}\)

\(S_{SAB}=\frac{1}{2}.SA.SB.sin\widehat{ASB}=\frac{9\sqrt{3}}{2}\)

\(\Rightarrow d\left(C;\left(SAB\right)\right)=\frac{3V_{S.ABC}}{S_{SAB}}=9\)

25 tháng 12 2016

nếu tính như vậy thì thể tích S.ABC=\(\frac{27\sqrt{2}}{2}\) chứ ạ?

31 tháng 12 2019

Phương pháp:

+) Lấy  sao cho SA = SB' = SC' = 2a. Chóp có các cạnh bên bằng nhau có chân đường cao trùng với tâm đường tròn ngoại tiếp đáy.

+) Tính thể tích 

 Tính thể tích  V S . A B C

Cách giải:

Lấy  sao cho SA = SB' = SC' = 2a.

 là tam giác đều cạnh 2a.

=> AB' = B'C' = 2a

Xét tam giác vuông SAC' có: 

Xét tam giác AB'C' có: 

Do đó tam giác AB'C' vuông tại B' (Định lí Pytago đảo).

Gọi H là trung điểm của AC' => H là tâm đường tròn ngoại tiếp 

Ta có 

 

Chọn: C