K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2021

ABCHDEFK

a) Vì: ^BAC=90 độ (t/g ABC vuông tại A)

           ^AHE=90 độ (AH đường cao)

             ^HEA=90 độ (HE_|_AC)

             ^HDA=90 độ (HD_|_AB)

=> ADHE là hcn (có 4 góc _|_)

b) Vì ADHE là hcn (cmt)

=>DH//AB

=>DH//FA (1)

Vì ADHE là hcn (cmt)

=>DH=AE

mà AE=FA ( cmt)

=>DH=FA (2)

Tù (1) và (2)=> AFDH là hbh (theo dấu hiệu // và = nhau)

c) ( chờ chút ăn cơm xong r làm)

13 tháng 11 2021

sorry

undefined

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với ACBài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF...
Đọc tiếp

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD 
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

0
20 tháng 11 2023

a:

ABCD là hình thoi

=>\(\widehat{C}+\widehat{B}=180^0\) và \(\widehat{B}=\widehat{D}=60^0\)

=>\(\widehat{C}=180^0-60^0=120^0\)

Xét ΔAFB vuông tại F và ΔAED vuông tại E có

AB=AD

\(\widehat{B}=\widehat{D}\)

Do đó: ΔAFB=ΔAED

=>AF=AE và BF=ED

Xét tứ giác AECF có

\(\widehat{AEC}+\widehat{AFC}+\widehat{C}+\widehat{FAE}=360^0\)

=>\(\widehat{FAE}+120^0+90^0+90^0=360^0\)

=>\(\widehat{FAE}=60^0\)

Xét ΔAEF có AE=AF và \(\widehat{FAE}=60^0\)

nên ΔAEF đều

b: CE+ED=CD

CF+FB=CB

mà CD=CB và ED=FB

nên CE=CF

Xét ΔCBF có \(\dfrac{CE}{CD}=\dfrac{CF}{CB}\)

nên EF//BD

21 tháng 11 2023

Mình cảm ơn ạ.

a: Xét ΔBMC vuông tại M và ΔDNC vuông tại N có

góc B=góc D

=>ΔBMC đồng dạng vớiΔDNC

b: Bạn ghi lại đề đi bạn

22 tháng 4 2016

no biết