K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Suy ra: AF//CE

 

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Suy ra: AF//CE

11 tháng 12 2021

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Suy ra: AF//CE

7 tháng 10 2016

a, Ta có: ABCD la hình bình hành

=> AB=CD; AB//CD

Mà E là trung điểm của AB; F là trung điểm của CD.

=>AE= EB= CF= DF (1)

VÌ AB// CD=>EB// DF (2)

Từ(1) và (2) => EBFD là hình bình hành (theo dấu hiệu nhận biết hình bình hành)(đpcm)

b, Xét hbh ABCD ta có:

AC cắt BD tại trung điểm của AC và BD (1)

Xét hình bình hành EBFD có EF cắt BD tại trung điểm của EF và BD (2)

Từ (1) và (2) =>  Ba đường thẳng AC, BD, EF đồng quy

23 tháng 9 2017

cm ơn

17 tháng 10 2023

Ta có: 

tam giác AEB = tam giác CFD 

=> \(\widehat{AEB}=\widehat{CFD}=\widehat{EDF}\left(slt\right)\) 

mà 2 goác có vị trí đồng vị

=> EB//DF

Mặt khác: ED//BF

=> EBFD là h.b.h

Ta có: 

Tam giác END= tam giác FMB

=> DN=BM

=> DN+MN=BM+MN=BN

Ta có:

Vì tứ giác ABCD và EBFC đều là h.b.h

=> AC, BD, EF đồng quy tại trung điểm của EF

a) Ta có: AB=CD(ABCD là hình bình hành)

mà \(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)

và \(DF=FC=\dfrac{DC}{2}\)(F là trung điểm của DC)

nên AE=EB=DF=FC

Xét tứ giác AECF có 

AE//CF(ABCD là hình bình hành)

AE=CF(cmt)

Do đó: AECF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét ΔABM có 

E là trung điểm của AB(gt)

EN//AM(cmt)

Do đó: N là trung điểm của BM(Định lí 1 về đường trung bình của tam giác)

Suy ra: BN=NM(1)

Xét ΔDNC có 

F là trung điểm của DC(gt)

FM//NC(cmt)

Do đó: M là trung điểm của DN(Định lí 1 về đường trung bình của tam giác)

Suy ra: DM=MN(2)

Từ (1) và (2) suy ra DM=MN=NB(Đpcm)