\(\sqrt{2019}\).so sánh f(2-
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 10 2019

Ta có \(4m-m^2-5=-\left(m-2\right)^2-1< 0\) \(\forall m\)

\(\Rightarrow f\left(x\right)\) nghịch biến trên R \(\Rightarrow f\left(a\right)>f\left(b\right)\Leftrightarrow a< b\)

\(2-\sqrt{2019}>2-\sqrt{2020}\Rightarrow f\left(2-\sqrt{2019}\right)< f\left(2-\sqrt{2020}\right)\)

14 tháng 1 2020

f(x) = ax\(^2\)+bx + 2019

=> \(f\left(1+\sqrt{2}\right)=a\left(1+\sqrt{2}\right)^2+b\left(1+\sqrt{2}\right)+2019=2020\)

<=> \(a+2\sqrt{2}a+2a+b+\sqrt{2}b-1=0\)

<=> \(\left(3a+b-1\right)+\sqrt{2}\left(2a+b\right)=0\)(1)

Vì a, b là số hữu tỉ => 3a + b -1 ; 2a + b là số hữu tỉ khi đó:

(1) <=> \(\hept{\begin{cases}3a+b-1=0\\2a+b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=-2\end{cases}}\)

=> \(f\left(1-\sqrt{2}\right)=2020\)

NV
3 tháng 3 2020

\(a=m^2-2m+3=\left(m-1\right)^2+2>0\) \(\forall m\)

\(\Rightarrow\) Hàm số đồng biến khi \(x>0\)

Vậy \(x_1>x_2>0\Rightarrow f\left(x_1\right)>f\left(x_2\right)\)

\(\sqrt{5}>\sqrt{2}>0\Rightarrow f\left(\sqrt{5}\right)>f\left(\sqrt{2}\right)\)

10 tháng 8 2020

1,Ta có : \(\sqrt{11}-\sqrt{10}=\frac{11-10}{\sqrt{11}+\sqrt{10}}=\frac{1}{\sqrt{11}+\sqrt{10}}\)

\(\sqrt{6}-\sqrt{5}=\frac{6-5}{\sqrt{6}-\sqrt{5}}=\frac{1}{\sqrt{6}-\sqrt{5}}\)

Dễ thấy : \(11+10>6+5\Rightarrow\sqrt{11}+\sqrt{10}>\sqrt{6}+\sqrt{5}\)

từ đó suy ra : \(\frac{1}{\sqrt{11}+\sqrt{10}}< \frac{1}{\sqrt{6}+\sqrt{5}}\)( theo so sánh phân số có cùng tử )

Vậy...

2,\(\sqrt{2019}+\sqrt{2021}và2\sqrt{2020}\)

Giả sử : \(\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)

\(\Leftrightarrow\left(\sqrt{2019}+\sqrt{2021}\right)^2< \left(2\sqrt{2020}\right)^2\) ( bình phương 2 vế )

\(\Leftrightarrow2019+2021+2\sqrt{2019.2021}< 4.2020\)

\(\Leftrightarrow4040+2\sqrt{2020^2-1^2}< 8080\)

\(\Leftrightarrow\)\(4040+\left(-4040\right)+2\left|2020-1\right|< 8080+\left(-4040\right)\)

( cộng cả hai vế với -4040)

\(\Leftrightarrow2.2019< 4040\)

\(\Leftrightarrow\frac{1}{2}.2.2019< 4040.\frac{1}{2}\)( nhân hai vế với 1/2)

\(\Leftrightarrow2019< 2020\) ( luôn đúng )

=> điều giả sử đúng

Vậy....

4,Ta có : \(\sqrt{2020}-\sqrt{2019}=\frac{2020-2019}{\sqrt{2020}+\sqrt{2019}}=\frac{1}{\sqrt{2020}+\sqrt{2019}}\)

\(\sqrt{2019}-\sqrt{2018}=\frac{2019-2018}{\sqrt{2019}+\sqrt{2018}}=\frac{1}{\sqrt{2019}+\sqrt{2018}}\)

dễ thấy \(2020+2019>2019+2018\Rightarrow\sqrt{2020}+\sqrt{2019}>\sqrt{2019}+\sqrt{2018}\) Từ đó suy ra : \(\frac{1}{\sqrt{2020}+\sqrt{2019}}< \frac{1}{\sqrt{2020}-\sqrt{2019}}\)

theo ss phân số có cùng tử

Vậy....

phần 5 làm tương tự như phần 4 nhé

24 tháng 4 2020

Theo đề bài: 

 \(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(1)

Lại có: \(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(\sqrt{x^2+\sqrt{2020}}-x\right)=\sqrt{2020}\)(2)

Và \(\left(\sqrt{y^2+\sqrt{2020}}-y\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(3)

Từ (1) và (3) => \(x+\sqrt{x^2+\sqrt{2020}}=\sqrt{y^2+\sqrt{2020}}-y\)

<=> \(x+y=-\sqrt{x^2+\sqrt{2020}}+\sqrt{y^2+\sqrt{2020}}\)(4)

Từ (1) và (2) => \(\sqrt{x^2+\sqrt{2020}}-x=\sqrt{y^2+\sqrt{2020}}+y\)

<=> \(x+y=\sqrt{x^2+\sqrt{2020}}-\sqrt{y^2+\sqrt{2020}}\)(5) 

Từ (4) ( 5 ) => x + y = - ( x + y ) <=> x = - y 

=> \(M=9x^4+7x^4-12x^2+4x^2+5\)

\(=16x^4-8x^2+5=\left(4x^2-1\right)^2+4\ge4\)

Dấu "=" xảy ra <=> \(4x^2-1=0\)<=> \(x=\pm\frac{1}{2}\)

Với x = 1/2 => (x; y) = ( 1/2; -1/2) 

Với x = -1/2 => ( x; y ) = ( -1/2; 1/2) 

Vậy min M = 4 đạt tại ....

QT
Quoc Tran Anh Le
Giáo viên
26 tháng 6 2019

Ta có: \(\left(\sqrt{2018}+\sqrt{2020}\right)^2=2018+2020+2\sqrt{2018.2020}\)

\(=4038+2\sqrt{\left(2019-1\right)\left(2019+1\right)}< 4038+2\sqrt{2019^2}\)

\(=4038+4038=8076\) (1)

Ta cũng có: \(\left(2\sqrt{2019}\right)^2=4.2019=8076\) (2)

Từ (1) và (2) \(\Rightarrow\sqrt{2018}+\sqrt{2020}< 2\sqrt{2019}\)

26 tháng 6 2019

Xét \(\left(\sqrt{2018}+\sqrt{2020}\right)^2=2018+2020+2\sqrt{2018.2020}\)

\(=2019+2019+2\sqrt{\left(2019+1\right)\left(2019-1\right)}\)

\(=2.2019+2\sqrt{2019^2-1}\)

\(\sqrt{2019^2-1}< \sqrt{2019^2}\Rightarrow2\sqrt{2019^2-1}< 2.2019\)

\(\Rightarrow2.2019+2\sqrt{2019^2-1}< 2.2019+2.2019=4.2019=\left(2\sqrt{2019}\right)^2\)

\(\Rightarrow\left(\sqrt{2018}+\sqrt{2020}\right)^2< \left(2\sqrt{2019}\right)^2\)

\(\Leftrightarrow\sqrt{2018}+\sqrt{2020}< 2\sqrt{2019}\)