K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2015

{(m+1 )x - 2y =m-1

{(m^2)x-y=m^2 + 2m

=>{(m+1)x-2y=m-1(1)

{(2m^2 )x-2y =2m^2 +4m (2)

(1)(2)=>(2m^2-3m-1x=2m^2+3m+1

=>x=(2m^2+3m+1)/(2m^2-m-1)=1+(4m+2)/(2m^2-m-1)

=1+(2m+1)/(m-1)(m+1/2) (3)

​Từ (3 ) ta thấy ĐK để hệ đã cho có nghiệm là #1

Và ĐK  để hệ có nghiệm duy nhất là m #1 và m # -1/2

Với các ĐK  đó từ (3)=>x=1+2/(m-1)  (*)

Thấy (*)vào (1) ta đc m+1 + 2 (m+1)/(m-1)-2y =m-1

=>y=1 + (m+1):(m-1)=2+2/(m-1)(**)

Tu (*)va(**)suy ra x,y la nghiem nguyen duy nhat  <=>m-1 la uoc cua 2 ,tuc m-1 thuoc {-2;-1;1;2}=>m thuoc (-1;0;2;3}.Đó là các giá trị cần tìm

3 tháng 2 2021

Thay m=2 vào HPT ta có: 

\(\left\{{}\begin{matrix}\left(2-1\right)x-2y=6-1\\2x-y=2+5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-4y=10\\-3y=3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

Vậy HPT có nghiemj (x;y) = (3;-11)

3 tháng 2 2021

nghiệm là (3;-1) nhé

DD
22 tháng 11 2021

a) Với \(m=0\): hệ phương trình đã cho tương đương với: 

\(\hept{\begin{cases}4y=10\\x=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=\frac{5}{2}\end{cases}}\)

Với \(m\ne0\): hệ có nghiệm duy nhất khi: 

\(\frac{m}{1}\ne\frac{4}{m}\Leftrightarrow m\ne\pm2\)

Hệ có vô số nghiệm khi: 

\(\frac{m}{1}=\frac{4}{m}=\frac{10-m}{4}\Leftrightarrow m=2\)

Hệ vô nghiệm khi: 

\(\frac{m}{1}=\frac{4}{m}\ne\frac{10-m}{4}\Leftrightarrow m=-2\).

b) với \(m\ne\pm2\)hệ có nghiệm duy nhất. 

\(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(4-my\right)+4y=10-m\\x=4-my\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(4-m^2\right)y=10-5m\\x=4-my\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{8-m}{m+2}\\y=\frac{5}{m+2}\end{cases}}\)

\(\hept{\begin{cases}\frac{8-m}{m+2}>0\\\frac{5}{m+2}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}8-m>0\\m+2>0\end{cases}}\Leftrightarrow-2< m< 8\)

c) \(\hept{\begin{cases}\frac{8-m}{m+2}=\frac{10-m-2}{m+2}=\frac{10}{m+2}-1\inℤ\\\frac{5}{m+2}\inℤ\end{cases}}\Leftrightarrow\frac{5}{m+2}\inℤ\)

\(\frac{5}{m+2}=t\inℤ\Rightarrow m=\frac{5}{t}-2\)

Để \(x,y\)dương thì \(-2< \frac{5}{t}-2< 8\Leftrightarrow0< \frac{5}{t}< 10\Rightarrow t\ge1\)

Vậy \(m=\frac{5}{t}-2\)với \(t\)nguyên dương thì thỏa mãn ycbt.