\(\int^{\left(m-1\right)x-my=3m-1}_{2x-y=m+5}\) 

 Với m = ? thì hệ c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2019

TH1: m=1 thay vào phương trình trên ta có:

\(0x+1=0\) ( vô lí)

Vậy m=1 loại

TH2: m khác 1

 \(\left(m-1\right)x+3m-2=0\Leftrightarrow\left(m-1\right)x=2-3m\Leftrightarrow x=\frac{2-3m}{m-1}\)

\(x\ge1\Leftrightarrow\frac{2-3m}{m-1}\ge1\Leftrightarrow\frac{2-3m}{m-1}-\frac{m-1}{m-1}\ge0\Leftrightarrow\frac{3-4m}{m-1}\ge0\)

\(\Leftrightarrow\frac{3}{4}\le m< 1\)

11 tháng 6 2019

không biết có đúng không nữa :(, kiến thức toán lớp 9 là gì ??

Phương trình đã cho tương đương với 

\(\left(m-1\right)x=2-3m.\)(*) 

Với m=1 thì (*) \(\Leftrightarrow0x=2-3\Leftrightarrow0x=-1\)(vô lí) 

Suy ra với m=1 thì phương trình đã cho vô nghiệm 

Với m khác 1 thì (*) \(\Leftrightarrow x=\frac{2-3m}{m-1}\)suy ra với m khác 1 thì phương trình đã cho luôn có nghiệm duy nhất 

Mà \(x\ge1\)nên \(\frac{2-3m}{m-1}\ge1\Leftrightarrow\frac{2-3m}{m-1}-\frac{m-1}{m-1}\ge0\Leftrightarrow\frac{2-3m-m+1}{m-1}\ge0\)

\(\Leftrightarrow\frac{-4m+3}{m-1}\ge0\)

Xảy ra 2 trường hợp:

TH1\(\hept{\begin{cases}-4m+3\ge0\\m-1>0\end{cases}\Leftrightarrow\hept{\begin{cases}m\le\frac{3}{4}\\m>1\end{cases}\Leftrightarrow}}m\in\varnothing.\)

TH2 \(\hept{\begin{cases}-4m+3\le0\\m-1< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}m\ge\frac{3}{4}\\m< 1\end{cases}\Leftrightarrow\frac{3}{4}\le}m< 1.\)

Vậy với \(\frac{3}{4}\le m< 1\)thì phương trình đã cho có nghiệm duy nhất \(x=\frac{2-3m}{m-1}\)thỏa mãn \(x\ge1\)

4 tháng 2 2021

jhyfhregrjhesdftruiejxfhrjehxgmjfd;j03169543256545449526u4tnkuyfnikuyf42b 4r 6e524brd62v4utq7w8e9r96f5d4s1d323g5t5esd232df2f5e2s2sd

5 tháng 7 2017

a, \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)

Tại m = 1 , ta có:

\(\left\{{}\begin{matrix}x+y=3\\x-y=-1\end{matrix}\right.\)

giải hệ ta được:\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

21 tháng 12 2019

mk ko vt lại đề 

=> (4x^2+8xy+4y^2)+(x^2-2x+1)+(y^2+2y+1)=0

=>(2x+2y)^2+(x-1)^2+(y+1)^2=0

...... phần này bn tự làm đc

=>x=1,y=-1

thay vào là dc

21 tháng 12 2019

Ta có : \(5x^2+5y^2+8xy-2x+2y+2=0\)

=> \(\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=0\)

=> \(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Ta có \(\left(2x+2y\right)^2\ge0\forall x,y\)   ,   \(\left(x-1\right)^2\ge0\forall x\)   ,   \(\left(y+1\right)^2\ge0\forall x\)

=> \(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\forall x,y\)

=> \(\hept{\begin{cases}x+y=0\\x-1=0\\y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\x=1\\y=-1\end{cases}}}\)

Thay vào M ta có:

\(M=0^{2016}+\left(1-2\right)^{2018}+\left(-1+1\right)^{2019}=1\)

8 tháng 2 2019

a,thay m giải như bình thường

b,đề hệ có no duy nhát thì \(\frac{a}{a'}\ne\frac{b}{b'}\)

hay\(\frac{m-1}{m}\ne1\)

=>đk của m rồi tìm x và y theo m rồi cho tmđk đề bài r đối chiếu với đk

=>m