K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 10 2017

Lời giải:

Viết lại hàm số: \(y=\frac{1}{3}mx^3-(m-1)x^2+3(m-2)x+\frac{1}{3}\)

Ta có \(y'=mx^2-2(m-1)x+3(m-2)\)

a) Trước tiên, để hàm số đạt cực trị tại $x=0$ thì $x=0$ phải là nghiệm của pt \(y'=0\Leftrightarrow 3(m-2)=0\Leftrightarrow m=2\)

Thử lại: \(y'=2x^2-2x\)

\(y'=0\Leftrightarrow x=0\) hoặc \(x=1\). Lập bảng biến thiên ta thấy đúng là $y$ cực đại tại $x=0$

Vậy $m=2$

b) Tương tự như phần a, để hàm số đạt cực trị tại $x=-1$ thì $x=-1$ phải là nghiệm của pt \(y'=0\)

\(\Leftrightarrow m(-1)^2-2(m-1)(-1)+3(m-2)=0\)

\(\Leftrightarrow m=\frac{4}{3}\)

Thử lại: \(y'=\frac{4}{3}x^2-\frac{2}{3}x-2\). Có \(y'=0\Leftrightarrow x=\frac{3}{2}\) hoặc $x=-1$. Lập bảng biến thiên ta thấy $y$ cực tiểu tại $x=\frac{3}{2}$ chứ không phải tại $x=-1$

Vậy không tồn tại $m$ thỏa mãn.

c) Hàm số có cực đại và cực tiểu khi $y'=0$ có hai nghiệm phân biệt.

Hay $mx^2-2(m-1)x+3(m-2)=0$ có hai nghiệm phân biệt

Do đó \(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m-1)^2-3m(m-2)>0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ -2m^2+4m+1>0\Leftrightarrow \frac{2-\sqrt{6}}{2}< m< \frac{2+\sqrt{6}}{2}\end{matrix}\right.\)

d) Điểm cực trị của hàm số chính là nghiệm của $y'=0$

Với ĐKXĐ như phần c, áp dụng hệ thức Viete:

\(\left\{\begin{matrix} x_1+x_2=\frac{2(m-1)}{m}\\ x_1x_2=\frac{3(m-2)}{m}\end{matrix}\right.\)

Nếu \(x_1+2x_2=1\Rightarrow x_2=1-(x_1+x_2)=\frac{2-m}{m}\)

\(x_1x_2=\frac{3(m-2)}{m}\Rightarrow x_1=-3\)

Khi đó: \(1=x_1+2x_2=-3+\frac{2-m}{m}=-4+\frac{2}{m}\Rightarrow m=\frac{2}{5}\)

Thử lại thấy thỏa mãn đkxđ. Vậy $m=\frac{2}{5}$

AH
Akai Haruma
Giáo viên
4 tháng 7 2017

Lời giải:

1.

Để ĐTHS có cực đại và cực tiểu thì \(y'=3x^2+2x+m+2=0\) có hai nghiệm phân biệt

\(\Leftrightarrow \Delta'=1-3(m+2)>0\Leftrightarrow m<\frac{-5}{3}\)

2.

ĐTHS có hai cực trị nằm về hai phía trục tung nghĩa là PT \(y'=3x^2+2x+m+2=0\) có hai nghiệm $x_1,x_2$ trái dấu.

Theo định lý Viete thì \(x_1x_2=\frac{m+2}{3}<0\Leftrightarrow m<-2\)

3. Áp dụng định lý Viete:

Cực trị với hoành độ âm thì: \(\left\{\begin{matrix} x_1+x_2=\frac{-2}{3}<0\\ x_1x_2=\frac{m+2}{3}>0\end{matrix}\right.\Leftrightarrow m>-2\Rightarrow -2< m<\frac{-5}{3}\)

4. Để ĐTHS có cực tiểu tại $x=2$ thì PT \(y'=3x^2+2x+m+2=0\) nhận $x=2$ là nghiệm \(\Leftrightarrow m=-18\)

Thử lại bằng bảng biến thiên ta thấy đúng.

18 tháng 10 2022

Chọn B

28 tháng 8 2016

.

 

14 tháng 12 2016

nếu có đáp án trắc nghiệm thì theo mình làm bài này nhanh như sau:

tìm tập xác định D=R

tính y', tìm điều kiện để cho hàm số có 3 điểm cực trị là pt y'=0 có 3 nghiệm phân biệt

áp dụng công thức tính nhanh :b^2 -6ac, suy ra m , kết hợp với điều kiện hàm số có 3 điểm cực trị, suy ra m cần tìm

lưu ý: công thức mình đưa ra là b^2-6ac chỉ áp dụng cho hàm bậc 4 trùng phương, 3 điểm cực trị là 3 đỉnh của tam giác và có trọng tâm là gốc tọa độ.

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

Bài 1:

\(y=x^4+2(m-4)x^2+m+5\)

\(\Rightarrow y'=4x^3+4(m-4)x\)

\(y'=0\Leftrightarrow x(x^2+m-4)=0\Leftrightarrow \left[\begin{matrix} x=0\\ x^2=4-m\end{matrix}\right.\)

Để đths có 3 điểm cực trị thì \(y'=0\) phải có ít nhất 3 nghiệm pb. Khi đó \(4-m>0\Rightarrow m< 4\)

Khi đó, các điểm cực trị là:

\((0; m+5)\)

\((\sqrt{4-m}, -m^2+9m-11)\)

\((-\sqrt{4-m}, -m^2+9m-11)\)

Nếu $O$ là trọng tâm:

\(\left\{\begin{matrix} \frac{0+\sqrt{4-m}-\sqrt{4-m}}{3}=x_O=0\\ \frac{m+5+2(-m^2+9m-11)}{3}=y_O=0\end{matrix}\right.\)

\(\Leftrightarrow -2m^2+19m-17=0\Rightarrow \left[\begin{matrix} m=\frac{17}{2}\\ m=1\end{matrix}\right.\)

Vì $m< 4$ nên $m=1$

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

Bài 2:
\(y'=4x^3-4mx=0\Leftrightarrow \left[\begin{matrix} x=0\\ x^2=m\end{matrix}\right.\)

Để hàm bậc 4 có 3 cực trị thì $y'=0$ phải có 3 nghiệm pb, suy ra $m>0$

Khi đó: \(y'=0\Leftrightarrow \left[\begin{matrix} x=0\\ x=\sqrt{m}\\ x=-\sqrt{m}\end{matrix}\right.\)

Ba điểm cực trị:

\(A(0; m-1)\)

\(B(\sqrt{m}; -m^2+m-1)\)

\(C(-\sqrt{m}; -m^2+m-1)\)

Suy ra:

\(\overrightarrow{BC}=(-2\sqrt{m};0)\); \(\overrightarrow{AB}=(\sqrt{m}; -m^2)\)

\(\overrightarrow{OA}=(0;m-1)\); \(\overrightarrow{OC}=(-\sqrt{m}; -m^2+m-1)\)

Vì $O$ là trực tâm nên : \(\left\{\begin{matrix} \overrightarrow{BC}.\overrightarrow{OA}=0\\ \overrightarrow{AB}.\overrightarrow{OC}=0\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} -2\sqrt{m}.0+0.(m-1)=0\\ -m+m^2(m^2-m+1)=0\end{matrix}\right.\)

\(\Rightarrow m(m^3-m^2+m-1)=0\)

\(\Leftrightarrow m(m^2+1)(m-1)=0\Rightarrow m=1\)\(m>0\)

Vậy.......

14 tháng 10 2020

2.

\(y'=3x^2-6mx+6m\)

Hàm số y có 2 điểm cực trị \(\Leftrightarrow\Delta'>0\)

\(\Leftrightarrow\left(-3m\right)^2-18m>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\)

14 tháng 10 2020

1.

Nhắc nhở một tý: Phương trình bậc 3 thì chỉ có thể có 2 cực trị hoặc là không có cực trị nào hết, không phương trình bậc 3 nào có 1 cực trị hết.

\(y'=x^3-6mx+4m^3\)

Hàm số có cực trị \(\Leftrightarrow y'=0\) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\)

\(\Leftrightarrow\left(-3m\right)^2-4m^3>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m< \frac{9}{4}\end{matrix}\right.\)