K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 12 2020

Phương trình hoành độ giao điểm:

\(x^2+3x=x+m^2\Leftrightarrow x^2+2x-m^2=0\)

Pt đã cho luôn có 2 nghiệm pb

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-m^2\end{matrix}\right.\) 

Do I là trung điểm đoạn AB \(\Leftrightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=-1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{x_A+m^2+x_B+m^2}{2}=m^2-1\end{matrix}\right.\)

Mà I thuộc d'

\(\Leftrightarrow y_I=2x_I+3\Leftrightarrow m^2-1=2.\left(-1\right)+3\)

\(\Leftrightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)

\(\Rightarrow\sum m^2=4\)

27 tháng 6 2016

Đường tròn (C) có tâm I(1; m), bán kính R = 5. 
Gọi H là trung điểm của dây cung AB. 
Ta có IH là đường cao của tam giác IAB:

undefined

27 tháng 6 2016

Mình làm ở words rồi copy vô paint, tại đang nghe nhạc nên có hình KM ở góc phải

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>-m=4

hay m=-4

b: PTHĐGĐ là:

\(\dfrac{1}{2}x^2-2x+m-1=0\)

\(\Leftrightarrow x^2-4x+2m-2=0\)

\(\text{Δ}=\left(-4\right)^2-4\left(2m-2\right)\)

\(=16-8m+8=-8m+24\)

Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0

hay m<3

Theo Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m-2\end{matrix}\right.\)

Theo đề, ta có: \(x_1\cdot x_2\left(x_1^2+x_2^2\right)=-48\)

=>\(\Leftrightarrow\left(2m-2\right)\cdot\left[4^2-2\left(2m-2\right)\right]=-48\)

\(\Leftrightarrow\left(m-1\right)\left(16-4m+4\right)=-24\)

\(\Leftrightarrow\left(m-1\right)\left(-4m+20\right)=-24\)

\(\Leftrightarrow\left(m-1\right)\left(m-5\right)=6\)

\(\Leftrightarrow m^2-6m-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=3+\sqrt{10}\left(loại\right)\\m=3-\sqrt{10}\left(nhận\right)\end{matrix}\right.\)

NV
16 tháng 11 2018

a/ Pt hoành độ giao điểm: \(x^2+mx+1=0\)

\(\Delta=m^2-4>0\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\) ; khi đó \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=1\end{matrix}\right.\)

\(A=\dfrac{\left(x_1-x_2\right)^2}{x_1+x_2+1}=\dfrac{\left(x_1+x_2\right)^2-4x_1x_2}{x_1+x_2+1}=\dfrac{m^2-4}{-m+1}\)

\(A=-m-1+\dfrac{3}{m-1}\)

Để A nguyên \(\Rightarrow\dfrac{3}{m-1}\) nguyên \(\Rightarrow m-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m-1>1\\m-1< -3\end{matrix}\right.\)

\(\Rightarrow m-1=3\Rightarrow m=4\)

b/ Gọi \(M\left(a;b\right)\) với \(\left\{{}\begin{matrix}-1\le a\le3\\b=a^2\end{matrix}\right.\)\(C\left(3;1\right)\)

\(\Rightarrow S_{MAB}=S_{ABC}-\left(S_{BCM}+S_{ACM}\right)\) \(\Rightarrow S_{MAB}\) lớn nhất khi và chỉ khi\(S_{BCM}+S_{ACM}\) nhỏ nhất

Ta có \(S_{BCM}+S_{ACM}=\left(x_C-x_B\right)\left(y_M-y_B\right)+\left(y_A-y_C\right)\left(x_A-x_M\right)\)

\(=4\left(b-1\right)+8\left(3-a\right)=4a^2-4+24-8a\)

\(=4\left(a^2-2a+1\right)+16=4\left(a-1\right)^2+16\ge16\)

\(\Rightarrow\left(S_{BCM}+S_{ACM}\right)_{min}=16\) khi \(a=1\)

Vậy khi tọa độ M là \(M\left(1;1\right)\) thì diện tích tam giác MAB nhỏ nhất

1 tháng 11 2018

1) d cắt trục hoành tại điểm A(1:0)=>0=a*1+b (1)

d// vs đường thẳng y=-2+2003=> a=-2 và b\(\ne\)2003 (2)

từ (1) và (2)=>\(\left\{{}\begin{matrix}a=-2\\b=2\left(\ne2003\right)\end{matrix}\right.\)

Vậy d:y=-2x+2

16 tháng 11 2022

Bài 2:

1: Tọa độ A là: 2x+2=-x+2 và y=2x+2

=>x=0 và y=2

Tọa độ B là: y=0 và 2x+2=0

=>x=-1 và y=0

Tọa độ C là:

y=0 và 2-x=0

=>C(2;0)

2: Để (d3) cắt cả (d1) và (d2) thì \(\left\{{}\begin{matrix}m< >2\\m< >-1\end{matrix}\right.\Leftrightarrow m\notin\left\{2;-1\right\}\)

Bài 2: 

Tọa độ giao điểm của Δ1 và Δ2 là:

\(\left\{{}\begin{matrix}2x+y=4\\5x-2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{9}\\y=\dfrac{26}{9}\end{matrix}\right.\)

Thay x=5/9 và y=26/9 vào Δ3, ta được:

\(\dfrac{5}{9}m+\dfrac{26}{3}-2=0\)

=>5/9m=-20/3

hay m=-12

NV
25 tháng 4 2020

Bài 2:

Đường tròn \(\left(C_1\right)\) tâm \(\left(1;2\right)\) bán kính \(R=2\)

a/ Không hiểu đề bài, bạn ghi rõ thêm ra được chứ?

Tiếp tuyến đi qua giao điểm của \(\Delta_1;\Delta_2\) hay tiếp tuyến tại các giao điểm của \(\Delta_1\)\(\Delta_2\) với đường tròn?

b/ Lại không hiểu đề nữa, điểm I trong tam giác \(IAB\) đó là điểm nào vậy bạn?

NV
25 tháng 4 2020

Bài 1b/

\(\Delta'\) nhận \(\left(2;1\right)\) là 1 vtpt

Gọi vtpt của d' có dạng \(\left(a;b\right)\Rightarrow\frac{\left|2a+b\right|}{\sqrt{2^2+1^2}.\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\)

\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{5\left(a^2+b^2\right)}\Leftrightarrow2\left(2a+b\right)^2=5\left(a^2+b^2\right)\)

\(\Leftrightarrow3a^2+8ab-3b^2=0\Rightarrow\left[{}\begin{matrix}a=-3b\\3a=b\end{matrix}\right.\)

\(\Rightarrow\) d' có 2 vtpt thỏa mãn là \(\left(3;-1\right)\)\(\left(1;3\right)\)

TH1: d' có pt dạng \(3x-y+c=0\)

\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|3.1-3+c\right|}{\sqrt{3^2+1^2}}=2\Rightarrow c=\pm2\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}3x-y+2\sqrt{10}=0\\3x-y-2\sqrt{10}=0\end{matrix}\right.\)

TH2: d' có dạng \(x+3y+c=0\)

\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|1+3.3+c\right|}{\sqrt{10}}=2\Leftrightarrow\left|c+10\right|=2\sqrt{10}\Rightarrow c=-10\pm2\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}x+3y-10+2\sqrt{10}=0\\x+3y-10-2\sqrt{10}=0\end{matrix}\right.\)