Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}-2x+3=x+2\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)
a) tự vẽ
b) Ta có phương trình hoành độ giao điểm của đồ thị hàm số (P) và đường thẳng (d) là:
2x2 = x + 3
<=> 2x2 - x - 3 = 0
Do a - b + c = 2 + 1 - 3 = 0
=> phương trình có 2 nghiệm phân biệt x1 = -1; x2 = 3/2
Với x = -1 => y = -1 + 3 = 2 => tọa độ giao điểm là (-1;2)
x = 3/2 => y = 3/2 + 3 = 9/2 => tọa độ giao điểm là (3/2; 9/2)
a) Để đồ thị hàm số \(y=ax^2\) đi qua điểm A(4;4) thì
Thay x=4 và y=4 vào hàm số \(y=ax^2\), ta được:
\(a\cdot4^2=4\)
\(\Leftrightarrow a\cdot16=4\)
hay \(a=\dfrac{1}{4}\)
a, - Thay tọa độ điểm A vào hàm số ta được : \(4^2.a=4\)
\(\Rightarrow a=\dfrac{1}{4}\)
b, Thay a vào hàm số ta được : \(y=\dfrac{1}{4}x^2\)
- Ta có đồ thì của hai hàm số :
c, - Xét phương trình hoành độ giao điểm :\(\dfrac{1}{4}x^2=-\dfrac{1}{2}x\)
\(\Leftrightarrow x^2+2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy hai hàm số trên cắt nhau tại hai điểm : \(\left(0;0\right);\left(-2;1\right)\)
a, tự tìm tự vẽ
b, Ta có : \(\hept{\begin{cases}y=x^2\\y=-x+2\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+x-2=0\\y=-x+2\end{cases}}\)
\(\left(1\right)\Rightarrow\Delta=1+8=9>0\)
\(x_1=\frac{-1-3}{2}=-2;x_2=\frac{-1+3}{2}=1\)
Với x = -2 => \(y=2+2=4\)
Với x = 1 => \(-1+2=1\)
Vậy giao điểm của 2 đồ thị trên là A ( -2 ; 4 ) ; B ( 1 ; 1 )