Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu \(2m+2=0\Rightarrow m=-1\Rightarrow y=-2\)
=> ĐTHS là đường thẳng đi qua (0;-2) và // với trục Ox
=> Khoảng cách từ O đến đths là 2
Nếu \(2m+2\ne0\Rightarrow m\ne-1\)
Khi đó ĐTHS \(y=\left(2m+2\right)x+m-1\) là đường thẳng đi qua điểm \(A\left(\frac{1-m}{2m+2};0\right)\) và \(B\left(0;m-1\right)\)
(ĐTHS bạn tự vẽ nhé)
Kẻ OH vuông góc với AB => OH là khoảng cách từ O đến đths
Tam giác AOB vuông tại O có OH là đường cao ứng với cạnh huyền nên ta có hệ thức sau:
\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{\left(\frac{1-m}{2m+2}\right)^2}+\frac{1}{\left(m-1\right)^2}=\frac{4m^2+8m+5}{m^2-2m+1}\)
\(\Rightarrow OH^2=\frac{m^2-2m+1}{4m^2+8m+5}\)
Đặt \(OH^2=a\ge0\)
\(\Rightarrow4m^2a+8ma+5a=m^2-2m+1\)
\(\Leftrightarrow m^2\left(4a-1\right)+2m\left(4a+1\right)+\left(5a-1\right)=0\)
\(\Delta^'=\left(4a+1\right)^2-\left(4a-1\right)\left(5a-1\right)=16a^2+8a+1-20a^2+9a-1\)
\(=-4a^2+17a=-a\left(4a-17\right)\)
\(\Delta^'\ge0\Leftrightarrow a\left(4a-17\right)\le0\Rightarrow0\le a\le\frac{17}{4}\)
\(\Rightarrow a_{max}=\frac{17}{4}\Rightarrow OH^2=\frac{17}{4}\Rightarrow OH=\frac{\sqrt{17}}{2}\)
Dấu "=" xảy ra khi: \(\frac{m^2-2m+1}{4m^2+8m+5}=\frac{17}{4}\Leftrightarrow4m^2-8m+4=68m^2+136m+85\)
\(\Leftrightarrow64m^2+144m+81=0\Leftrightarrow\left(8m+9\right)^2=0\Rightarrow m=-\frac{9}{8}\)
Vậy khoảng cách lớn nhất từ O đến đths là \(\frac{\sqrt{17}}{2}\) khi \(m=-\frac{9}{8}\)
a)Để y là hàm số bậc nhất thì
\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)
Từ 2 điều trên suy ra m-2=0
=>m=2
Vậy m=2
a) Hàm số nghịch biến trên R <=> a < 0
<=> 2m - 1 < 0
<=> 2m < 1
<=> m < 1/2
b) Gọi điểm bị cắt là A ( x;y )
cắt trục hoành tại điểm có tọa độ -1
=> x = -1 ; y = 0
=> A ( -1 ; 0 )
Ta có y = ( 2m - 1)x + m - 1 cắt A ( -1;0 )
=> 0 = ( 2m -1 ). ( -1 ) + m - 1
<=> -2m + 1 + m - 1 =0
<=> -m = 0
<=> m = 0
Vậy khi m = 0 thì đồ thị của hàm số cắt trục hoành tại điểm có hoành độ -1
c) y x 0 1 4 M ( 1;4 ) y=(2m............ -1 E F H
Vì đồ thị của hàm số ( đtchs ) đi qua M(1;4) nên thay điểm M vào đtchs ta được:
4 = ( 2m - 1).1+m - 1
<=> 4 = 2m - 1 + m - 1
<=> 4 = 3m - 2
<=> 6 = 3m
<=> m = 2 ( 1 )
Gọi \(E\left(x_E;y_E\right)\)là điểm nằm trên trục tung vào được đtchs đi qua
Và ta có \(x_E=0\) ( vì xE trùng với góc tọa độ ) ( 2 )
Thay ( 1 ) và ( 2 ) vào đtchs ta được:
y = ( 2 . 2 - 1 ). 0 + 2 - 1
y = 2 - 1
y = 1
Áp dụng hệ thức lượng vào tam giác OEF vuông tại O
\(\frac{1}{OH^2}=\frac{1}{OE^2}+\frac{1}{OF^2}\)
\(\Leftrightarrow\frac{1}{OH^2}=\frac{1}{1^2}+\frac{1}{\left(-1\right)^2}\)
\(\Leftrightarrow\frac{1}{OH^2}=2\)
\(\Leftrightarrow2OH^2=1\)
\(\Leftrightarrow OH^2=\frac{1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}OH=\frac{\sqrt{2}}{2}\left(nhận\right)\\OH=-\frac{\sqrt{2}}{2}\left(loại\right)\end{cases}}\) ( loại -v2/2 vì độ dài không có giá trị âm )
Vậy khoảng cách từ gốc tọa độ O đến đường thẳng đó là \(\frac{\sqrt{2}}{2}\)
HỌC TỐT !!!!
Để ptđt trên là hàm bậc nhất khi \(3-m\ne0\Leftrightarrow m\ne3\)
Thay x = 0 ; y = 5 vào ptđt y = (3-m)x + m-4
\(5=m-4\Leftrightarrow m=9\)(tm)
Để hàm số y=(1-m)x+1 là hàm số bậc nhất thì \(1-m\ne0\)
\(\Leftrightarrow m\ne1\)
a) Để hàm số y=(1-m)x+1 đồng biến trên R thì 1-m>0
\(\Leftrightarrow-m>-1\)
hay m<1
Kết hợp ĐKXĐ, ta được: m<1
Vậy: Để hàm số y=(1-m)x+1 đồng biến trên R thì m<1
c)
Thay m=2 vào hàm số y=(1-m)x+1, ta được:
y=(1-2)x+1
\(\Leftrightarrow y=-x+1\)Gọi A(xA,yA) và B(xB,yB) lần lượt là giao điểm của đồ thị hàm số y=-x+1 với trục Ox và trục Oy
Vì A(xA,yA) là giao điểm của đồ thị hàm số y=-x+1 với trục Ox nên yA=0
Thay y=0 vào hàm số y=-x+1, ta được:
-x+1=0
\(\Leftrightarrow-x=-1\)
hay x=1
Vậy: A(1;0)
Vì B(xB,yB) là giao điểm của đồ thị hàm số y=-x+1 với trục Oy nên xB=0
Thay x=0 vào hàm số y=-x+1, ta được:
y=-0+1=1
Vậy: B(0;1)
Độ dài đoạn thẳng OB là:
\(OB=\sqrt{\left(x_O-x_B\right)^2+\left(y_O-y_B\right)^2}\)
\(\Leftrightarrow OB=\sqrt{\left(0-0\right)^2+\left(0-1\right)^2}=1\)(đvđd)
Độ dài đoạn thẳng OA là:
\(OB=\sqrt{\left(x_O-x_A\right)^2+\left(y_O-y_A\right)^2}\)
\(\Leftrightarrow OB=\sqrt{\left(0-1\right)^2+\left(0-0\right)^2}=1\)(đvđd)
Độ dài đoạn thẳng AB là:
\(AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}\)
\(\Leftrightarrow AB=\sqrt{\left(1-0\right)^2+\left(0-1\right)^2}=\sqrt{2}\)(đvđd)
Ta có: \(AB^2=\left(\sqrt{2}\right)^2=2\)
\(OA^2+OB^2=1^2+1^2=2\)
Do đó: \(AB^2=OA^2+OB^2\)(=2)
Xét ΔOAB có \(AB^2=OA^2+OB^2\)(cmt)
nên ΔOAB vuông tại O(Định lí Pytago đảo)
Kẻ OH⊥AB tại H
⇒OH là khoảng cách từ O đến (d)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔOAB vuông tại O có OH là đường cao ứng với cạnh huyền AB, ta được:
\(OH\cdot AB=OA\cdot OB\)
\(\Leftrightarrow OH\cdot\sqrt{2}=1\cdot1=1\)
hay \(OH=\dfrac{\sqrt{2}}{2}\)(đvđd)
Vậy: Khoảng cách từ O đến (d) là \(OH=\dfrac{\sqrt{2}}{2}\)
PT giao Ox: \(y=0\Leftrightarrow\left(m-1\right)x=-3m\Leftrightarrow x=\dfrac{3m}{1-m}\Leftrightarrow A\left(\dfrac{3m}{1-m};0\right)\Leftrightarrow OA=\left|\dfrac{3m}{1-m}\right|\)
PT giao Oy: \(x=0\Leftrightarrow y=3m\Leftrightarrow B\left(0;3m\right)\Leftrightarrow OB=\left|3m\right|\)
Gọi H là hình chiếu O lên đths
K/c từ O đến đths đạt max khi OH đạt max
Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\)
\(\Leftrightarrow\dfrac{1}{OH^2}=\dfrac{\left(1-m\right)^2}{9m^2}+\dfrac{1}{9m^2}=\dfrac{m^2-2m+2}{9m^2}\)
Đặt \(\dfrac{1}{OH^2}=t\Leftrightarrow9m^2t=m^2-2m+2\)
\(\Leftrightarrow m^2\left(9t-1\right)+2m-2=0\)
Coi đây là PT bậc 2 ẩn m, PT có nghiệm khi:
\(\Delta=4-4\left(-2\right)\left(9t-1\right)\ge0\\ \Leftrightarrow4+72t-9\ge0\\ \Leftrightarrow t\ge\dfrac{5}{72}\Leftrightarrow\dfrac{1}{OH^2}\ge\dfrac{5}{72}\\ \Leftrightarrow OH^2\le\dfrac{72}{5}\Leftrightarrow OH\le\dfrac{6\sqrt{10}}{5}\)
Dấu \("="\Leftrightarrow\) PT có nghiệm kép
\(\Leftrightarrow m=-\dfrac{b}{2a}=-\dfrac{2}{18t-2}=-\dfrac{2}{18\cdot\dfrac{5}{72}-2}=\dfrac{8}{3}\)
cho em hỏi cái đoạn coi đây là PT bâc 2 ẩn m , cái hình tam giác là gì vậy ạ với lại 4 -4(-2) là ở đâu vậy ạ