K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 1 2022

\(y=\dfrac{x-1}{x+1}\Rightarrow y'=\dfrac{2}{\left(x+1\right)^2}>0\)

Do OAB vuông cân \(\Rightarrow AB\) tạo với trục hoành 1 góc 45 độ hoặc 135 độ

\(\Rightarrow\) Hệ số góc đường thẳng thỏa mãn: \(\left[{}\begin{matrix}k=tan45^0=1\\k=tan135^0=-1< 0\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{\left(x+1\right)^2}=1\Rightarrow\left[{}\begin{matrix}x=-1-\sqrt{2}\Rightarrow y=1+\sqrt{2}\\x=-1+\sqrt{2}\Rightarrow y=1-\sqrt{2}\end{matrix}\right.\)

Phương trình tiếp tuyến:

\(\left[{}\begin{matrix}y=1\left(x+1+\sqrt{2}\right)+1+\sqrt{2}\\y=1\left(x+1-\sqrt{2}\right)+1-\sqrt{2}\end{matrix}\right.\)

NV
2 tháng 4 2021

\(y'=\dfrac{-3}{\left(x-1\right)^2}\)

Gọi tiếp điểm có hoành độ \(x_0\)

Phương trình tiếp tuyến: \(y=\dfrac{-3}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{2x_0+1}{x_0-1}\) (1)

a.

Tọa độ A và B có dạng: \(A\left(\dfrac{2x_0^2+2x_0-1}{3};0\right)\) ; \(B\left(0;\dfrac{2x_0^2+2x_0-1}{\left(x_0-1\right)^2}\right)\)

\(\Rightarrow OA=\left|\dfrac{2x_0^2+2x_0-1}{3}\right|;OB=\dfrac{\left|2x_0^2+2x_0-1\right|}{\left(x_0-1\right)^2}\)

\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{6}\Rightarrow OA.OB=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{\left(2x_0^2+2x_0-1\right)^2}{3\left(x_0-1\right)^2}=\dfrac{1}{3}\Rightarrow\left(2x_0^2+2x_0-1\right)^2=\left(x_0-1\right)^2\)

\(\Leftrightarrow\left(2x_0^2+3x_0-2\right)\left(2x_0^2+x_0\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=-\dfrac{1}{2}\\x_0=-2\\x_0=\dfrac{1}{2}\end{matrix}\right.\) 

Có 4 tiếp tuyến thỏa mãn:... (thế lần lượt các giá trị \(x_0\) vào (1) là được)

2 tháng 4 2021

em cam ơn a

NV
21 tháng 4 2019

\(y'=\frac{-1}{\left(x-1\right)^2}\)

a/ Gỉa sử tại \(A\left(a;\frac{2a-1}{a-1}\right)\) đồ thị hàm số có tiếp tuyến thỏa mãn yêu cầu

Phương trình d tiếp tuyến:

\(y=\frac{-1}{\left(a-1\right)^2}\left(x-a\right)+\frac{2a-1}{a-1}\)

Giao điểm của d với \(x=1\)\(y=2\) lần lượt có tọa độ \(B\left(1;\frac{2a}{a-1}\right)\)\(C\left(2a-1;2\right)\)

\(IB=\sqrt{\left(1-1\right)^2+\left(\frac{2a}{a-1}-2\right)^2}=\frac{2}{\left|a-1\right|}\)

\(IC=\sqrt{\left(2a-1-1\right)^2+\left(2-2\right)^2}=2\left|a-1\right|\)

\(BC=\sqrt{IB^2+IC^2}=\sqrt{\frac{4}{\left(a-1\right)^2}+4\left(a-1\right)^2}\)

\(\Rightarrow P_{IBC}=IB+IC+BC=\frac{2}{\left|a-1\right|}+2\left|a-1\right|+\sqrt{\frac{4}{\left(a-1\right)^2}+4\left(a-1\right)^2}\)

\(\Rightarrow P_{IBC}\ge2\sqrt{\frac{2}{\left|a-1\right|}.2\left|a-1\right|}+\sqrt{2\sqrt{\frac{4}{\left(a-1\right)^2}.4\left(a-1\right)^2}}=4+2\sqrt{2}\)

Dấu "=" xảy ra khi \(\left(a-1\right)^2=1\Rightarrow a=0\)

Phương trình d: \(y=-x+1\)

NV
21 tháng 4 2019

b/ Có một cách ứng dụng, đó là tiếp tuyến có khoảng cách đến giao điểm của hai tiệm cận là lớn nhất khi tiếp tuyến đó vuông góc với đường phân giác hai tiệm cận (đường phân giác có cắt đồ thị hàm số)

\(\Rightarrow\) Nếu hàm số đồng biến thì tiếp tuyến này có hệ số góc bằng 1, hàm số nghịch biến thì tiếp tuyến này có hệ số góc bằng -1

Ví dụ trong bài này, hàm số nghịch biến nên ta có ngay tiếp tuyến cần tìm có dạng \(y=-x+b\)

Mặt khác \(y'\left(x_0\right)=-1\Rightarrow\frac{-1}{\left(x_0-1\right)^2}=-1\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=2\end{matrix}\right.\)

Phương trình tiếp tuyến: \(\left[{}\begin{matrix}y=-x+1\\y=-x+5\end{matrix}\right.\)

// Làm theo kiểu bình thường:

Gọi \(A\left(a;\frac{2a-1}{a-1}\right)\) là điểm mà tại đó tiếp tuyến có tính chất thoả mãn yêu cầu

Phương trình tiếp tuyến d: \(y=\frac{-1}{\left(a-1\right)^2}\left(x-a\right)+\frac{2a-1}{a-1}\)

\(\Leftrightarrow x+\left(a-1\right)^2y-2a^2+2a-1=0\)

Áp dụng công thức khoảng cách:

\(d\left(I;d\right)=\frac{\left|1+2\left(a-1\right)^2-2a^2+2a-1\right|}{\sqrt{1^2+\left(a-1\right)^4}}=\frac{2\left|a-1\right|}{\sqrt{1+\left(a-1\right)^4}}=\frac{2}{\sqrt{\frac{1}{\left(a-1\right)^2}+\left(a-1\right)^2}}\le\frac{2}{\sqrt{2\sqrt{\frac{1}{\left(a-1\right)^2}\left(a-1\right)^2}}}=\sqrt{2}\)

Dấu "=" xảy ra khi \(\left(a-1\right)^4=1\Rightarrow\left[{}\begin{matrix}a=0\\a=2\end{matrix}\right.\)

Phương trình tiếp tuyến: \(\left[{}\begin{matrix}y=-x+1\\y=-x+5\end{matrix}\right.\)

Rõ ràng cách này dài hơn rất nhiều

6 tháng 4 2017

Tập xác định: \(D= \mathbb{R}\setminus \{1\}\)

Ta có: \(y'=\dfrac{-1}{(x-1)^2} \ \forall x\in D\)

a) Do \(y_A=3\)\(A\in (h)\) nên ta có:

\(\dfrac{2x_A-1}{x_A-1}=3 \Leftrightarrow x_A=2 \ \ (t/m)\)

Suy ra tiếp tuyến qua A của (h) là:

\(y-y_A=y'(x_A)(x-x_A)\\ \Leftrightarrow y-3=-1(x-2)\\ \Leftrightarrow x+y-5=0\)

6 tháng 4 2017

Giả sử tiếp điểm của tiếp tuyến đó với (h) là \(B(x_B,y_B), \ x_B \ne 1\)

Do \(B\in(h)\) nên \(y_B=\dfrac{2x_B-1}{x_B-1}\)

Khi đó ta có:

\(MB=2 \Leftrightarrow \sqrt{(x_B)^2+(\dfrac{2x_B-1}{x_B-1}-1)^2}=2 \Leftrightarrow x^2_B+\dfrac{x^2_B}{(x_B-1)^2}=4 \\ \Leftrightarrow x^2_B(x_B-1)^2+x^2_B=4(x_B-1)^2 \Leftrightarrow x^4_B-2x^3_B-2x^2_B+8x_B-4=0\\ \Leftrightarrow (x^2_B-x_B+1)^2=5(x_B-1)^2\\ \Leftrightarrow \left[ \begin{array}{} x^2_B-x_B+1=\sqrt{5}(x_B-1)\\ x^2_B-x_B+1=-\sqrt{5}(x_B-1) \end{array}{} \right.\\ \Leftrightarrow \left[ \begin{array}{} x^2_B-(\sqrt{5}+1)x_B+\sqrt{5}+1=0\ (vô nghiệm)\\ x^2_B+(\sqrt{5}-1)x_B+1-\sqrt{5}=0 \end{array}{} \right.\\ \Leftrightarrow \left[ \begin{array}{} x_B=\dfrac{1-\sqrt{5}+\sqrt{2+2\sqrt{5}}}{2}\\ x_B=\dfrac{1-\sqrt{5}-\sqrt{2+2\sqrt{5}}}{2} \end{array}{} \right.\\ \)Từ đó với cách tìm tiếp tuyến tương tự như câu (a) em sẽ viết được tiếp tuyến!

AH
Akai Haruma
Giáo viên
15 tháng 4 2018

Lời giải:

Ta có: \(y=\frac{x+2}{2x+3}\Rightarrow y'=\frac{-1}{(2x+3)^2}\)

Gọi tiếp điểm có hoành độ là $a$. Khi đó pt tiếp tuyến của $(C)$ tại tiếp điểm là:

d: \(y=f'(a)(x-a)+f(a)=\frac{-1}{(2a+3)^2}(x-a)+\frac{a+2}{2a+3}(*)\)

Từ đây ta suy ra :

\(d\cap Ox=A(2a^2+8a+6,0)\)

\(d\cap Oy=B(0, \frac{2a^2+8a+6}{(2a+3)^2})\)

Vì tam giác $OAB$ cân tại $O$ nên:

\(OA=OB\Leftrightarrow |2a^2+8a+6|=|\frac{2a^2+8a+6}{(2a+3)^2}|\)

\(\Leftrightarrow |2a^2+8a+6|\left(1-\frac{1}{(2a+3)^2}\right)=0\)

Hiển nhiên $|2a^2+8a+6|\neq 0$ do $A$ khác $O$

\(\Rightarrow 1-\frac{1}{(2a+3)^2}=0\Rightarrow (2a+3)^2=1\)

\(\Rightarrow 2a+3=\pm 1\Rightarrow a=-2; a=-1\)

Thay vào $(*)$ suy ra PTTT là:
\(\left[\begin{matrix} y=-x\\ y=-x-2\end{matrix}\right.\)

NM
21 tháng 3 2022

a. \(y'\left(x_0\right)=-2x_0+3\)

b. phương trình tiếp tuyến tại x0 =2 là 

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0=-\left(x-2\right)+0\text{ hay }y=-x+2\)

c.\(y_0=0\Rightarrow\orbr{\begin{cases}x_0=1\\x_0=2\end{cases}\Rightarrow PTTT\orbr{\begin{cases}y=x-1\\y=-x+2\end{cases}}}\)

d. vì tiếp tuyến vuông góc với đường thẳng có hệ số góc bằng 1 nên tiếp tuyến có hệ số góc = -1 

hay \(-2x_0+3=-1\Leftrightarrow x_0=2\Rightarrow PTTT:y=-x+2\)