\(0< x=\frac{a}{b}< 1;y=\frac{a+c}{b+c},c\inℤ_+\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2018

Vì \(0< \frac{a}{b}< 1\) nên ta có thể giả sử a và b là 2 số nguyên dương

Do đó ta có : 

\(0< a< b\Rightarrow b-a>0\)

Ta có :

\(y-x=\frac{\left(b-a\right)c}{\left(b+c\right)b}>0\)

=> y > x ( đpcm)

Các bạn xem bài làm của mình , còn thiếu sót gì mong các bạn bỏ qua.

Sgk

2 tháng 8 2017

Theo đề bài ta có x = \(\frac{a}{m}\) , y = \(\frac{b}{m}\)(  a, b, m \(\in\) Z, m > 0 )

Vì x < y nên ta suy ra a < b

Ta có : x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\), , z = \(\frac{a+b}{2m}\)

Vì a < b => a + a < a +b => 2a < a + b

Do 2a< a +b nên x < z (1)

Vì a < b => a + b < b + b => a + b < 2b

Do a+b < 2b nên z < y   (2)

Từ (1) và (2) ta suy ra x < z< y


 

Em có cách giải này, nhờ mí anh chị hay bạn xem zùm e, có j sai sửa giúp e nha!

   Do a/b < c/d và b>0 ; d>0 suy ra ad< bc    ( 1)

  Cộng thêm ad vào 2 vế của ( 1) ta được:

ad + ad < bc + ad

 => a( b+d) < b ( a+ c )

=> a/b < a+c/b+c    ( 2)

Cộng thêm cd vào 2 vế của ( 2) ta được:

   ad + cd < bc + cd

=> ( a+ c) b < ( b+ d ) c

=> a+c/b+d < c/d     ( 3) 

Từ ( 2) và ( 3) ta có: a/b < a+c/b+d < c/d hay x< z< y 

b)   Ta có: 

  -1/5 < -1/6 => -1/5 < -2/11 < -1/6 

-1/5 < -2/11 => -1/5 < - 3/16 < -2/11 

-1/5 < -3/16 => -1/5 < -4/21 < -3/16 

-1/5 < -4/21 => -1/5 < -4/21 < -3/16 

Vậy -1/5 < -4/21 < -3/16 < -2/11 < -1/6 

Nhờ mấy ah cj xem zùm rùi cho em biết còn thiếu gì ko! Thanks nhìu ạ <3 

     

31 tháng 7 2017

\(\frac{a}{b}=\frac{ad}{bd}\)

\(\frac{c}{d}=\frac{cb}{bd}\)

Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bc}< \frac{bc}{bd}\)

26 tháng 5 2016

  a, b cùng dấu thì a/b > 0 ..dễ hiểu thôi nếu cả a, b đều dương thì a/d dĩ nhiên dương, nếu cả a,b đều âm thì a/b cũng dương vì -a/-b = a/b (nhân hai vế với trừ 1) 
a, b khác dấu thì a/b luôn âm nên a/b < 0

26 tháng 5 2016

ta có : x < y hay a/m < b/m   => a < b.

So sánh x, y, z ta chuyển chúng cùng mẫu : 2m

x =  a/m  = 2a/ 2m và y = b/m = 2b/2m  và z = (a + b) / 2m

mà : a < b

suy ra : a + a < b + a

hay 2a < a + b

suy ra x < z (1)

mà : a < b

suy ra : a + b < b + b

hay a + b < 2b

suy ra z < y (2)

 Đúng 8

thien ty tfboys 08/06/2015 lúc 14:52

Ta có :x<y hay a/m <b/m=>a<b

So sánh x,y,z ta chuyển chúng cùng mau :2m

x=a/m =2a/2m va y=b/m =2b/2m va z=a+b/2m

Ma a<b

Suy ra  :a+a<b +a

Hay 2a <a+b

Suy ra x<z                                         (1)

Ma :a<b

Suy ra :a+b<b+b

Hay a+b ,2b

suy ra z < y                                             (2)

​Từ (1) và (2) ,kết luận :x < z < y

1 tháng 6 2018

a.

Ta có:\(\frac{-45}{47}>-1\) và \(\frac{51}{-50}< -1\)\(\Rightarrow\)\(\frac{-45}{47}>\frac{51}{-50}\Rightarrow x>y\) 

b.

x>y mà

11 tháng 9 2016

câu 1;

ta thấy 4 phan 5 bé hơn 1

1 < 1,1 

suy ra 4 phần 5 <1,1

 

11 tháng 9 2016

câu2;

ta thấy;

-500<0

0<0,001

 vây suy ra -500<0,001

25 tháng 8 2015

b1 thì dễ rùi, mik ko làm nha.b2:

Ta có x = \(\frac{a}{m}\) = \(\frac{a+a}{2m}\); y = \(\frac{b}{m}\) = \(\frac{b+b}{2m}\)

Vì x<y => a<b => a+a<a+b => \(\frac{a+a}{2m}<\frac{a+b}{2m}\)=> x<z      (1)

Vì a<b => a+b<b+b => \(\frac{a+b}{2m}<\frac{b+b}{2m}\) => z<y      (2)

Từ (1) và (2) => x<z<y

25 tháng 8 2015

Ta có x < y

=> x + x < y + x

=> \(\frac{2a}{m}<\frac{a+b}{m}\)

=> 2a < a + b

=> x + y < y + y

=> \(\frac{a+b}{m}<\frac{2b}{m}\)

=> a + b < 2b

Mà x = \(\frac{a}{m}\)=\(\frac{2a}{2m}\)

      y = \(\frac{b}{m}\)=\(\frac{2b}{2m}\)

Theo giả thuyết trên

=> 2a < a + b < 2b

=> \(\frac{2a}{2m}<\frac{a+b}{2m}<\frac{2b}{2m}\)

=> x < z < y (Đpcm)