Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt \(x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m\left(2m-1\right)=0\) (1)
Ta thấy ngay pt (1) có 1 nghiệm x = 2
Vậy nên ta có: \(x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m\left(2m-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+\left(1-m\right)x+\left(-2m^2+m\right)\right)=0\)
Để pt (1) có đúng hai nghiệm phân biệt thì pt \(\Leftrightarrow x^2+\left(1-m\right)x+\left(-2m^2+m\right)=0\) có 1 nghiệm duy nhất khác 2
Tức là: \(\hept{\begin{cases}\Delta=0\\4+2\left(1-m\right)+\left(-2m^2+m\right)\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(3m-1\right)^2=0\\-2m^2-m+6\ne0\end{cases}}\Leftrightarrow m=\frac{1}{3}\)
Vậy \(m=\frac{1}{3}.\)
Thầy/cô ơi làm sao để tách ra được nhân tử chung (x-2) vậy ạ
x^2 -(3m-1)x +2m^2 -m=0
a) Khi m=1 ta có phương trình như sau:
x^2 -(3.1 -1)x +2.1-1=0
<=> x^2 -2x +1=0
<=>(x-1)^2 =0
<=>x=1
+Xét pt (1), ac < 0 => pt luôn có 2 nghiệm pb
Để 2 pt tương đương thì trước hết pt (2) cũng có 2 nghiệm pb
<=> 3n < 0 <=> n <0
+ Theo định lý Vi-et:
pt (1) : \(\left\{{}\begin{matrix}x_1+x_2=-4m-3n\\x_1x_2=-9\end{matrix}\right.\)
pt (2) : \(\left\{{}\begin{matrix}x_1+x_2=2m+4n\\x_1x_2=3n\end{matrix}\right.\)
pt (1) và (2) tương đương => \(\left\{{}\begin{matrix}-4m-3n=2m+4n\\3n=-9\end{matrix}\right.\)
(bạn tự giải tiếp nhé ^^!, tìm n từ phương trình dưới rồi thay vào pt trên tìm m)
x^2 +(4m+3n)x -9 =0 (1)
x^2 +(2m +4n)x +3n =0 (2)
\(\Delta_1=\left(4m+3n\right)^2+36\)> 0 với mọi m;n => (1) luôn có hai nghiệm
có tích hai nghiệm = -9 không phụ thuộc m;n
để tương đương => (2) phải có hai nghiệm giống (1)
\(\left\{{}\begin{matrix}\Delta_2'=\left(m+2\right)^2-3n>0\\x_1..x_2=3n=-9=>n=n=-3\end{matrix}\right.\) với n=-3 \(\Delta_2'=\left(m+2\right)^2+9>0\) đúng với m => nhận n =-3
tổng hai nghiệm bằng nhau
<=>\(x_{11}+x_{12}=x_{12}+x_{22}\Leftrightarrow\left(4m-9\right)=\left(2m-8\right)\Leftrightarrow2m=1;m=\dfrac{1}{2}\)
kết luận
\(\left\{{}\begin{matrix}m=\dfrac{1}{2}\\n=-3\end{matrix}\right.\)
\(\text{Δ}=\left(m-1\right)^2-\left(m^2+2m-8\right)\)
\(=m^2-2m+1-m^2-2m+8\)
\(=-4m+9\)
Để pt có 2 nghiệm phân biệt thì Δ>0
\(Hay:-4m+9>0\)
\(\Leftrightarrow-4m>-9\)
\(\Leftrightarrow m< 2,25\)
Vậy để pt có 2 nghiệm phân biệt thì m<2,25
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
n=1;m=2.nha