Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét △OBD vuông tại D và △OAC vuông tại C
Có: xOy là cạnh chung
OB = OA (gt)
=> △OBD = △OAC (ch-gn)
b, Vì △OBD = △OAC (cmt) => OD = OC (2 cạnh tương ứng) và OBD = OAC (2 góc tương ứng)
Ta có: OD + AD = OA và OC + CB = OB
Mà OA = OB (gt) ; OD = OC (cmt)
=> AD =BC
Xét △CIB vuông tại C và △DIA vuông tại D
Có: BC = AD (cmt)
CBI = DAI (2 góc tương ứng)
=> △CIB = △DIA (cgv-gnk)
=> IC = ID (2 cạnh tương ứng)
c, Xét △AOI và △BOI
Có: OA = OB (gt)
OI là cạnh chung
IA = IB (△DIA = △CIB)
=> △AOI = △BOI (c.c.c)
=> AOI = BOI (2 góc tương ứng)
=> OI là tia phân giác của góc AOB
hay OI là tia phân giác của góc xOy
a)
Xét t/g vg AOCvà t/g vg BOD
có:AO=BO(gt)
go1cA là góc chung
->t/g AOC=t/g BOD(c.góc vg -góc nhon kề)
b)
Xét t/g vg ACB và t/g vg BDA
có:BD=AC(t/g AOC=t/gBOD)
AB là cạnh chung
->t/g ACB=t/g BDA(c.huyền -c.góc vg)
->góc CAB=góc DBA(2 góc tương ứng)
->t/g AIB cân tại I(t/c của t/g cân)
c)
kẻ dường thẳng OI
Xét t/g vg DOI và t/g vg COI
có:OD=OC(t/g ODB=t/g OCA)
OI là cạnh chung
->t/g DOI=t/g COI(c.huyền -cạnh góc vg)
->DI=IC(2 cạnh tương ứng)
d)(ko pt lm)SORRY
Bài 3
Trả lời:
a) Xét ΔAKC,ΔAHBΔAKC,ΔAHB có :
AKCˆ=AHBˆ(=90O)AKC^=AHB^(=90O)
AB=AC(ΔABC cân tại A)AB=AC(ΔABC cân tại A)
Aˆ:chungA^:chung
=> ΔAKC=ΔAHBΔAKC=ΔAHB (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
~Học tốt!~
Bài 1 : a) Xét ΔAKC,ΔAHBΔAKC,ΔAHB có :
AKCˆ=AHBˆ(=90O)AKC^=AHB^(=90O)
AB=AC(ΔABC cân tại A)AB=AC(ΔABC cân tại A)
Aˆ:chungA^:chung
=> ΔAKC=ΔAHBΔAKC=ΔAHB (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
Bài 2
a, Xét tam giác OBN và tam giác MAO ta có:
OB=OA( giả thiết)
góc OBN= góc OAM=90 độ
có chung góc O
⇒⇒tam giác OBN = tam giác OAM( cạnh góc vuông/ góc nhọn kề cạnh)
suy ra: ON=OM(hai cạnh tương ứng)
+ vì OA=OB và ON=OM
suy ra : OM-OB=ON-OA
suy ra : BM=AN
b, theo câu a ta có :
tam giác OBN= tam giác OAM
suy ra : góc ANH = góc BMH( hai góc tương ứng )
xét tam giác HMB và tam giác HAN ta có
BN=AN
góc HAN = góc HBM = 900
góc ANH = góc HBM
suy ra: tam giác BMH = tam giác ANH(cạnh góc vuông/ góc nhọn kề cạnh)
suy ra : HB=HA(hai cạnh tương ứng)
xét tam giác OHA và tam giác OHB ta có
OA=OB(giả thiết)
HB=HA
OH là cạnh chung
suy ra: tam giác OHA = tam giác OHB(c.g.c)
suy ra: góc BOH= góc AOH( hai góc tương ứng)
vậy OH là tia phân giác của góc xOy
c, xét tam giác MOI và tam giác NOI ta có :
OM=On ( giả thiết)
góc BOH= góc HOA
Oi là cạnh chung
suy ra tam giác MOI= tam giác NOI(c.g.c)
suy ra góc MIO = góc NIO (hai góc tương ứng)
mà góc MIO + góc NIO = 1800 ( hai góc kề bù)
nên OI vuông góc với MN
áp dụng định lý của hai đường thẳng vuông góc ta có ba điểm O,H,I thẳng hàng
Bài 3 mình không biết làm :)))
Chúc bạn học tốt ~!
a: Xét ΔOCA vuông tại C và ΔODB vuông tại D có
OA=OB
góc O chung
=>ΔOCA=ΔODB
b: Xét ΔBDA vuông tại D và ΔACB vuông tại C có
BD=AC
BA chung
=>ΔBDA=ΔACB
=>góc IAB=góc IBA
=>ΔIAB cân tại I
c: IA=IB
IB>IC
=>IA>IC
Cm: a) Xét t/giác OAB và t/giác OAC
có góc C = góc B = 900 (gt)
OA : chung
góc O1 = góc O2 (gt)
=> t/giác OAB = t/giác OAC (ch - gn)
=> AB = AC (hai cạnh tương ứng)
b) Áp dụng định lí Py - ta - go vào t/giác OAB vuông tại B, ta có :
OA2 = OB2 + AB2
=> AB2 = OA2 - OB2 = 52 - 42 = 25 - 16 = 9
=> AB = 3 (cm)
Bạn tự vẽ hình nha
a.
Xét tam giác OAC và tam giác OBD có:
COD là góc chung
OA = OB (gt)
OAC = OBD ( = 900)
=> Tam giác OAC = Tam giác OBD (g.c.g)
=> AC = BD (2 cạnh tương ứng)
b.
OA = OB (gt)
=> Tam giác OAB cân tại O
Xét tam giác AOI vuông tại A và tam giác BOI vuông tại B có:
OA = OB (gt)
OI là cạnh chung
=> Tam giác AOI = Tam giác BOI (cạnh huyền - cạnh góc vuông)
=> AI = BI (2 cạnh tương ứng)
=> I thuộc đường trung trực của AB (1)
OA = OB (gt)
=> O thuộc đường trung trực của AB (2)
Từ (1) và (2), ta có:
OI là đường trung trực của tam giác OAB cân tại O
=> OI là tia phân giác của xOy
Chúc bạn học tốt