K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2016

Ta có : \(A=\frac{\tan\alpha}{1+\tan^2\alpha}=\tan\alpha.\cos^2\alpha=\sin\alpha.\cos\alpha=\frac{3}{5}\cos\alpha\left(1\right)\)

\(\cos^2\alpha=1-\sin^2\alpha=1-\left(\frac{3}{5}\right)^2=\frac{16}{25}\)  (2)

Vì \(\alpha\in\left(\frac{\pi}{2};\pi\right)\) nên \(\cos\alpha<0\)

Do đó, từ (2) suy ra \(\cos\alpha=-\frac{4}{5}\) (3)

Thế (3) vào (1) ta được \(A=-\frac{12}{25}\)

30 tháng 7 2019
https://i.imgur.com/qOszLcC.jpg
HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Vì \(0<\alpha <\frac{\pi }{2} \) nên \(\sin \alpha  > 0\). Mặt khác, từ \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) suy ra

\(\sin \alpha  = \sqrt {1 - {{\cos }^2}a}  = \sqrt {1 - \frac{1}{{25}}}  = \frac{{2\sqrt 6 }}{5}\)

Do đó, \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{{2\sqrt 6 }}{5}}}{{\frac{1}{5}}} = 2\sqrt 6 \) và \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{\frac{1}{5}}}{{\frac{{2\sqrt 6 }}{5}}} = \frac{{\sqrt 6 }}{{12}}\)

b) Vì \(\frac{\pi }{2} < \alpha  < \pi\) nên \(\cos \alpha  < 0\). Mặt khác, từ \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) suy ra

       \(\cos \alpha  = \sqrt {1 - {{\sin }^2}a}  = \sqrt {1 - \frac{4}{9}}  = -\frac{{\sqrt 5 }}{3}\)

Do đó, \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{2}{3}}}{{-\frac{{\sqrt 5 }}{3}}} = -\frac{{2\sqrt 5 }}{5}\) và \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{-\frac{{\sqrt 5 }}{3}}}{{\frac{2}{3}}} = -\frac{{\sqrt 5 }}{2}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

c) Ta có: \(\cot \alpha  = \frac{1}{{\tan \alpha }} = \frac{1}{{\sqrt 5 }}\)

Ta có: \({\tan ^2}\alpha  + 1 = \frac{1}{{{{\cos }^2}\alpha }} \Rightarrow {\cos ^2}\alpha  = \frac{1}{{{{\tan }^2}\alpha  + 1}} = \frac{1}{6} \Rightarrow \cos \alpha  =  \pm \frac{1}{{\sqrt 6 }}\)

Vì \(\pi  < \alpha  < \frac{{3\pi }}{2} \Rightarrow \sin \alpha  < 0\;\) và \(\,\,\cos \alpha  < 0 \Rightarrow \cos \alpha  = -\frac{1}{{\sqrt 6 }}\)

Ta có: \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \sin \alpha  = \tan \alpha .\cos \alpha  = \sqrt 5 .(-\frac{1}{{\sqrt 6 }}) = -\sqrt {\frac{5}{6}} \)

d) Vì \(\cot \alpha  =  - \frac{1}{{\sqrt 2 }}\;\,\) nên \(\,\,\tan \alpha  = \frac{1}{{\cot \alpha }} =  - \sqrt 2 \)

Ta có: \({\cot ^2}\alpha  + 1 = \frac{1}{{{{\sin }^2}\alpha }} \Rightarrow {\sin ^2}\alpha  = \frac{1}{{{{\cot }^2}\alpha  + 1}} = \frac{2}{3} \Rightarrow \sin \alpha  =  \pm \sqrt {\frac{2}{3}} \)

Vì \(\frac{{3\pi }}{2} < \alpha  < 2\pi  \Rightarrow \sin \alpha  < 0 \Rightarrow \sin \alpha  =  - \sqrt {\frac{2}{3}} \)

Ta có: \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }} \Rightarrow \cos \alpha  = \cot \alpha .\sin \alpha  = \left( { - \frac{1}{{\sqrt 2 }}} \right).\left( { - \sqrt {\frac{2}{3}} } \right) = \frac{{\sqrt 3 }}{3}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

Ta có:

 \(\begin{array}{l}{\tan ^2}\alpha  + 1 = \frac{1}{{{{\cos }^2}\alpha }}\\ \Rightarrow {\left( {\frac{2}{3}} \right)^2} + 1 = \frac{1}{{{{\cos }^2}\alpha }}\\ \Rightarrow \frac{1}{{{{\cos }^2}\alpha }} = \frac{{13}}{9}\\ \Rightarrow \cos \alpha  =  \pm \frac{{3\sqrt {13} }}{{13}}\end{array}\)

Do \(\pi  < \alpha  < \frac{{3\pi }}{2} \Rightarrow \cos \alpha  =  - \frac{{3\sqrt {13} }}{{13}}\)

Ta có: \(\begin{array}{l}\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \frac{2}{3} = \sin \alpha :\left( { - \frac{{3\sqrt {13} }}{{13}}} \right)\\ \Rightarrow \sin \alpha  =  - \frac{{2\sqrt {13} }}{{13}}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có:

a) \(\sin \left( {\alpha  + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha \sin \frac{\pi }{6} = \frac{{\sqrt 6 }}{3}.\frac{{\sqrt 3 }}{2} + \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{1}{2} = \frac{{ - \sqrt 3  + 3\sqrt 2 }}{6}\)      

b) \(\cos \left( {\alpha  + \frac{\pi }{6}} \right) = \cos \alpha .\cos \frac{\pi }{6} - \sin \alpha \sin \frac{\pi }{6} = \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} - \frac{{\sqrt 6 }}{3}.\frac{1}{2} =  - \frac{{3 + \sqrt 6 }}{6}\)

c) \(\sin \left( {\alpha  - \frac{\pi }{3}} \right) = \sin \alpha \cos \frac{\pi }{3} - \cos \alpha \sin \frac{\pi }{3} = \frac{{\sqrt 6 }}{3}.\frac{1}{2} - \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} = \frac{{3 + \sqrt 6 }}{6}\)

d) \(\cos \left( {\alpha  - \frac{\pi }{6}} \right) = \cos \alpha \cos \frac{\pi }{6} + \sin \alpha \sin \frac{\pi }{6} = \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} + \frac{{\sqrt 6 }}{3}.\frac{1}{2} = \frac{{ - 3 + \sqrt 6 }}{6}\)

NV
19 tháng 10 2019

\(tanx=tan\alpha\Rightarrow x=\alpha+k\pi\)

 

\(5sin2a-6cosa=0\)

\(\Leftrightarrow sin2a=\dfrac{6}{5}cosa\)

\(\Leftrightarrow2\cdot sina\cdot cosa=\dfrac{6}{5}\cdot cosa\)

\(\Leftrightarrow cosa\left(2sina-\dfrac{6}{5}\right)=0\)

=>cosa=0 hoặc sina=3/5

hay \(a=\dfrac{\Pi}{2}+k\Pi\) hoặc \(\left[{}\begin{matrix}a=arcsin\left(\dfrac{3}{5}\right)+k2\Pi\\a=\Pi-arcsin\left(\dfrac{3}{5}\right)+k2\Pi\end{matrix}\right.\)

mà 0<a<pi/2

nên \(a=arcsin\left(\dfrac{3}{5}\right)\)

\(A=sina+sina+cota=2\cdot sina+cota\)

\(=\dfrac{38}{15}\)