Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. cho các số thực dương x,y,z t/mãn: x2 + y2 + z2 = 1
Cmr: \(\frac{x}{y^2+z^2}\) + \(\frac{y}{x^2+z^2}+\frac{z}{x^2+y^2}\ge\) \(\frac{3\sqrt{3}}{2}\)
2. Cho x,y thỏa mãn \(\hept{\begin{cases}xy\ge0\\x^2+y^2=1\end{cases}}\)
Tìm GTNN,GTLN của \(S=x\sqrt{1+y}+y\sqrt{1+x}\)
3. Cho \(\hept{\begin{cases}xy\ne0\\xy\left(x+y\right)=x^2+y^2-xy\end{cases}}\)
Tìm GTLN của \(A=\frac{1}{x^3}+\frac{1}{y^3}\)
4. Cho tam giác ABC; đường thẳng đi qua trọng tâm G và tâm đường tròn nội tiếp I vuông góc với đường phân giác trong của góc C. Gọi a,b,c là độ dài 3 canh tương ứng với 3 đỉnh A,B,C.
Cmr: \(\frac{1}{a}+\frac{1}{b}\le\frac{2}{c}\)
ui má. đúng mấy bài tập thầy tui cho ôn. giờ đang loay hoay
a: \(\Leftrightarrow x^4-x^2-3x^3+6x+\left(b+1\right)x^2-b-1+\left(a-6\right)x+2b+1⋮x^2-1\)
=>a-6=0 và 2b+1=0
=>a=6; b=-1/2
b: =2x^2-3x
=2(x^2-3/2x)
=2(x^2-2*x*3/4+9/16-9/16)
=2(x-3/4)^2-9/8>=-9/8
Dấu = xảy ra khi x=3/4
Theo đề bài ta có :
\(F\left(x\right)=\left(x-1\right)\cdot Q\left(x\right)-4\) (1)
\(F\left(x\right)=\left(x+2\right)\cdot R\left(x\right)+5\) (2)
Thay \(x=1\) vào (1) ta có :
\(F\left(1\right)=-4\)
\(\Leftrightarrow1+a+b+c=-4\)
\(\Leftrightarrow a+b+c=-5\)
Thay \(x=-2\) vào (2) ta có :
\(F\left(-2\right)=5\)
\(\Leftrightarrow-8+4a-2b+c=5\)
\(\Leftrightarrow4a-2b+c=13\)
Do đó ta có : \(\hept{\begin{cases}a+b+c=-4\\4a-2b+c=13\end{cases}}\)
....
F(-2)=0=> -8a+4b+c=0 (1)
f(1)=6=> a+b+c=6 (2)
f(-1)=4=> -a+b+c=4 (3)
(2) trừ (3)=> 2a=2=> a=1; thay vào (3)=> c=5-b thay vào (1)
-8+4b+5-b=0=> b=1
\(\left\{{}\begin{matrix}a=-1\\b=1\\c=4\\f\left(x\right)=-x^3+x^2+4\end{matrix}\right.\)
Ta có : \(f\left(x\right)=ax^2+bx+c=a\left(x^2+\frac{bx}{a}\right)+c=a\left(x^2+2.x.\frac{b}{2a}+\frac{b^2}{4a^2}\right)-\frac{b^2}{4a}+c\)
\(=a\left(x+\frac{b}{2a}\right)^2-\frac{b^2-4ac}{4a}\ge-\frac{b^2-4ac}{4a}\)(vì a>0)
Dấu đẳng thức xảy ra \(\Leftrightarrow x=-\frac{b}{2a}\)
Do đó : Min f(x) = \(\frac{4ac-b^2}{4a}\Leftrightarrow x=-\frac{b}{2a}\)
b) \(f\left(x\right)=-ax^2+bx+c=-a\left(x^2-bx\right)+c=-a\left(x^2-2.x.\frac{b}{2a}+\frac{b^2}{4a^2}\right)-\frac{b^2}{4a}+c=-a\left(x-\frac{b}{2a}\right)^2+\frac{4ac-b^2}{4a}\le\frac{4ac-b^2}{4a}\)(vì a<0)
Dấu đẳng thức xảy ra \(\Leftrightarrow x=\frac{b}{2a}\)
Vậy Max f(x) = \(\frac{4ac-b^2}{4a}\Leftrightarrow x=\frac{b}{2a}\)