K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2021

- Xét đường tròn \(\left(C\right)\) có tâm \(I\left(1;0\right)\) và \(R=\dfrac{\sqrt{5}}{5}\)

- Để đường thẳng d và đường tròn không có điểm chung 

\(\Leftrightarrow d_{\left(d/I\right)}=\dfrac{\left|m-2m+3\right|}{\sqrt{m^2+1}}>R=\dfrac{\sqrt{5}}{5}\)

\(\Leftrightarrow\dfrac{m^2-6m+9}{m^2+1}>\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{m^2-6m+9-0,2m^2-0,2}{m^2+1}>0\)

\(\Leftrightarrow0,8m^2-6m+8,8>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< \dfrac{11}{2}\end{matrix}\right.\)

Vậy ...

 

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

10 tháng 5 2024
Để giải bài toán này, ta cần tìm phương trình của đường thẳng delta và tìm điểm cắt của đường thẳng đó với đường tròn (C). Sau đó, tính độ dài đoạn thẳng AB và tìm 6a + 3b.1. Tìm phương trình của đường thẳng delta: Vì đường thẳng delta đi qua điểm H(-2;2), nên ta có thể viết phương trình của delta dưới dạng: ax + by + 1 = 0 Thay H vào phương trình trên, ta được: -2a + 2b + 1 = 0 => a = (2b + 1) / 22. Tìm điểm cắt của đường thẳng delta với đường tròn (C): Để tìm điểm cắt, ta giải hệ phương trình giữa phương trình đường thẳng delta và phương trình đường tròn (C).3. Tính độ dài đoạn thẳng AB: Sau khi tìm được hai điểm A và B, ta tính độ dài AB bằng công thức khoảng cách giữa hai điểm trong mặt phẳng Oxy.4. Tính 6a + 3b: Sau khi tìm được a và b, ta tính 6a + 3b để đưa ra kết quả cuối cùng. 

1: x^2+y^2+6x-2y=0

=>x^2+6x+9+y^2-2y+1=10

=>(x+3)^2+(y-1)^2=10

=>R=căn 10; I(-3;1)

Vì (d1)//(d) nên (d1): x-3y+c=0

Theo đề, ta có: d(I;(d1))=căn 10

=>\(\dfrac{\left|-3\cdot1+1\cdot\left(-3\right)+c\right|}{\sqrt{1^2+\left(-3\right)^2}}=\sqrt{10}\)

=>|c-6|=10

=>c=16 hoặc c=-4

30 tháng 5 2019

Đáp án B

+ Tọa độ giao điểm của hai đường thẳng d và d’ là nghiệm của hệ phương trình:

suy ra d và d’ cắt nhau tại M( m-1; 3m-1)

+  Vì ba đường thẳng d; d’ ; d’’ đồng quy nên d’’ qua M ta có

3m-1= -m( m-1) + 2 hay m2+ 2m-3=0

Suy ra m=1 hoặc m= -3

Với m= 1 ta có ba đường thẳng là d: y= x+ 2; d’ :  y= 3x+ 2 và d’’: y= -x+ 2  phân biệt và đồng quy tại M(0; 2).

Với m= -3  ta có d và d’’ trùng nhau suy ra m= -3 không thỏa mãn

Vậy m= 1 là giá trị cần tìm.

Chọn B.

31 tháng 5 2021

1.

\(\left(C\right):x^2+y^2-2x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)

Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)

Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)

Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)

\(\Leftrightarrow m=-1\pm\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)

31 tháng 5 2021

2.

Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)

\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)

\(\Leftrightarrow m=-1\pm2\sqrt{2}\)

\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)

(C); x^2+6x+y^2-2y=0

=>x^2+6x+9+y^2-2y+1=10

=>(x+3)^2+(y-1)^2=10

=>I(-3;1); \(R=\sqrt{10}\)

Để Δ tiếp xúc vơi (C) thì d(I;Δ)=căn 10

=>\(\dfrac{\left|-3\cdot3+1\cdot\left(-1\right)+2m\right|}{\sqrt{3^2+\left(-1\right)^2}}=\sqrt{10}\)

=>|2m-10|=10

=>2m-10=10 hoặc 2m-10=-10

=>m=0 hoặc m=10

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

Vecto pháp tuyến của là: \(\overrightarrow {{n_1}}  = \left( {m; - 1} \right)\)

Vecto pháp tuyến của là: \(\overrightarrow {{n_2}}  = \left( {2; - 1} \right)\)

Vậy ai đường thẳng \({\Delta _1}\),\({\Delta _2}\)  vuông góc với nhau khi và chỉ khỉ \(\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} \) vuông góc với nhau tức là \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 0 \Leftrightarrow 2m + 1 = 0 \Leftrightarrow m = \frac{{ - 1}}{2}\)

17 tháng 2 2017

Đáp án: A

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 4)

Ta có:

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 4)

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 4)