Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: đường kính AB vuông góc với dây CD tại M (gt) (1)
⇒MC=MD(2)⇒MC=MD(2)
Mà MA = ME (E đối xứng với A qua M) (3)
Từ (2), (3) ⇒⇒ Tứ giác ACED là hình bình hành (4)
Từ (1), (2) ⇒AB⇒AB là đường trung trực của CD
⇒⇒ Điểm E nằm trên đường trung trực AB cách đều 2 đầu mút C và D ⇒EC=ED⇒EC=ED (5)
Từ (4), (5) ⇒⇒ Tứ giác ACED là hình thoi
b) Ta có: AB = 2R = 2 . 6,5 = 13 (cm)
⇒MB=AB−MA=13−4=9(cm)⇒MB=AB−MA=13−4=9(cm)
Theo hệ thức lượng ta có:
MC2 = MA . MB = 4 . 9 = 36
⇔MC=√36=6(cm)⇔MC=36=6(cm)
Từ (2) ⇒MC=MD=CD2⇒MC=MD=CD2
⇔CD=2MC=2.6=12(cm)
em mới học lớp 5 ạ
a: E đối xứng A qua H
=>H là trung điểm của AE
Ta có: ΔOCD cân tại O
mà OH là đường cao
nên H là trung điểm của CD
Xét tứ giác ACED có
H là trung điểm chung của AE và CD
=>ACED là hình bình hành
Hình bình hành ACED có AE\(\perp\)CD
nên ACED là hình thoi
b: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>AC\(\perp\)CB
Ta có: AC\(\perp\)CB
DE//AC(ACED là hình thoi)
Do đó: DE\(\perp\)BC tại I
=>ΔEIB vuông tại I
=>I nằm trên đường tròn tâm O', đường kính EB
Ta có: OO'+O'B=OB
=>O'O=OB-O'B=R1-R2
=>(O) và (O') tiếp xúc trong với nhau tại B
c: ΔDIC vuông tại I
mà IH là đường trung tuyến
nên HI=HD
=>ΔHID cân tại H
=>\(\widehat{HID}=\widehat{HDI}=90^0-\widehat{DCB}\)
Ta có: O'E=O'I
=>ΔO'EI cân tại O'
=>\(\widehat{O'IE}=\widehat{O'EI}\)
mà \(\widehat{O'EI}=\widehat{HED}\)(hai góc đối đỉnh)
và \(\widehat{HED}=\widehat{DCB}\)(=90 độ-CDE)
nên \(\widehat{O'IE}=\widehat{DCB}\)
Ta có: \(\widehat{HIO'}=\widehat{HIE}+\widehat{O'IE}\)
\(=90^0-\widehat{DCB}+\widehat{DCB}=90^0\)
=>HI là tiếp tuyến của (O')
A B C D M H K O E
a, có A đối xứng với E qua M (gt) => M là trđ của AE (Đn) mà có AE _|_ CD tại M (gt)
=> CD là đường trung trực của AE (đn)
=> CA = CE = ED = AD (đl)
=> ACED là hình thoi (đn)
b, có AM + MO = AO mà có AM = 4; AO = 6 (gT)
=> MO = 2,5
xét tg CMO có ^CMO = 90 => MO^2 + CM^2 = CO^2 (Pytago) có CO = 6,5
=> CM^2 = 36 => CM = 6 do CM > 0
có CM = MD do CADE là hình thoi => CM + MD = CD = 2CM
=> CD = 12
c, C thuộc (O;R) (gt) => ^ACB = 90 (đl)
có MH _|_ AC (Gt) => ^MHC = 90 ; MK _|_ BC (gt) => MKC = 90
=> HMKC là hình chữ nhật (dh) => HM = CK và HC = MK (1)
Xét tg AMC vuông tại M => MC^2 = HC.AC và (1) => MC^2 = MK.AC
xét tg CMB vuông tại M => MC^2 = CK.BC và (1) => MC^2 = MH.BC
=> MC^4 = MK.MH.AC.BC
=> MC^4/AC.BC = MK.MH mà có AC.BC = CM.AB
=> MC^4/MC.AB = MK.MH
=> MC^3/AB = MK.MH
mà AB = 2R
=> MC^3/2R = MK.MH