K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

jhfduyyggyugysfys jxjnreueuhuea

14 tháng 9 2021

Ta có : (O;AB/2) = OB 

(O;AB/2) = OA 

Lại có : AD + DO = OA

OC + BC = OB 

Vì OA = OB = R => AD + DO = OC + BC 

mà BD > BC => OD < OC 

=> AD > BC 

16 tháng 8 2021

sao cho bd với bc cái gì vậy bạn! Lần sau nhớ gõ đủ câu hỏi nha!

16 tháng 8 2021

sao cho bd > bc nha cậu .

 

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MFBài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.Bài 3....
Đọc tiếp

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MF

Bài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.

Bài 3. Cho đường tròn (O), hai dây AB và AC vuông góc với nhau có độ dài theo thứ tự bằng 10cm và 24cm. a) Tính khoảng cách từ tâm đến mỗi dây b) chứng minh rằng ba điểm B, O, C thẳng hàng.

Bài 4. Cho đường tròn (O), hai dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Trên tia đối của tia AB lấy điểm E sao cho AE = BM. Trên tia đối của tia CD lấy điểm F sao cho CF = DM. Chứng minh rằng OE = OF.

Bài 5. Cho đường tròn (O), hai dây AB và CD có AB > CD, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. So sánh các độ dài MH và MK. 

giải giúp mình vs ạ . tạo mình đang cần gấp . cảm ơn nha

 

0

a) Xét (O) có 

\(\widehat{ACB}\) là góc nội tiếp chắn \(\stackrel\frown{AB}\)

\(\stackrel\frown{AB}\) là nửa đường tròn(AB là đường kính của (O))

Do đó: \(\widehat{ACB}=90^0\)(Hệ quả góc nội tiếp)

⇔BC⊥AC tại C

⇔BC⊥AF tại C

\(\widehat{BCF}=90^0\)

\(\widehat{ECF}=90^0\)

Xét (O) có 

\(\widehat{ADB}\) là góc nội tiếp chắn \(\stackrel\frown{AB}\)

\(\stackrel\frown{AB}\) là nửa đường tròn(AB là đường kính của (O))

Do đó: \(\widehat{ADB}=90^0\)(Hệ quả góc nội tiếp)

⇔AD⊥BD tại D

⇔AD⊥BF tại D

\(\widehat{ADF}=90^0\)

\(\widehat{EDF}=90^0\)

Xét tứ giác CEDF có 

\(\widehat{FCE}\) và \(\widehat{FDE}\) là hai góc đối

\(\widehat{FCE}+\widehat{FDE}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: CEDF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

⇔C,E,D,F cùng nằm trên một đường tròn(đpcm)

13 tháng 2 2021

chứng minh câu b với c hộ em ak

26 tháng 7 2019

a, Ta chứng minh E là trung điểm của AC nên OE = 1 2 BC

Tương tự ta có OF =  1 2 DB

Mà BC < BD ta suy ra OE < OF

b, Chứng minh được  A E 2 = A O 2 - O E 2 và A F 2 = A O 2 - O F 2

Từ đó ta có A E 2 > A F 2 => AE > AF

=> sđ  A E ⏜ ; A F ⏜

16 tháng 11 2022

a:góc ABD=góc DCA

góc ABD=góc FAD(góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AD)

góc FAD=góc CAD

=>góc ABD=góc CBD

=>BD là phân giác của góc ABE

mà góc ADB=90 độ

nên BD là đường cao

=>ΔBAE cân tại B

b: Xét ΔEAB có

AC,BD là các đường cao

AC cắt BD tại K

Do đó: K là trực tâm

=>EK vuông góc với BA

c: Xét ΔAKF có AD vừa là đường cao, vừa là phân giác

nên ΔAKF cân tại A

=>góc AKF=góc AFK=góc KFE

=>AK//FE

Xét tứ giác AKEF có

AK//FE

AF//KE

KE=KA

Do đó: AKEF là hình thoi