Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
a) Tứ giác AOBE nội tiếng ( 2 góc đối = 180 độ )
b) tam giác OMH đồng dạng tam giác OIK ( góc hóc) ==> đpcm
c) Có MI vuông góc AB, IA=IB==> tam gisc MAB cân tại M
đồng thời E cách đều AB, ==> đpcm
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
a) zì H là trung điểm của AB nên \(OH\perp AB\)hay \(\widehat{OHM}=90^0\)
theo tính chất của tiếp tuyến ta lại có \(OD\perp DM\left(hay\right)\widehat{ODM}=90^0\)
=> M,D,O,H cùng nằm trên 1đường tròn
b) Theo tính chất tiếp tuyến ta có
MC=MD=> tam giác MDC cân tại M
=> MI là 1 đương phân giác của CMD , MẶt khác I là điểm chính giữa cung nhỏ CD nên :
\(\widehat{DCI}=\frac{1}{2}sđ\widebat{DI}=\frac{1}{2}sđ\widebat{CI}=\widehat{MCI}\)
=> CI là phân giác của góc MCD .
zậy I là tâm đường tròn nội tiếp tam giác MCD
b: Xét tứ giác MAIO có
\(\widehat{OIM}=\widehat{OAM}=90^0\)
Do đó: MAIO là tứ giác nội tiếp
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
a: OH*OM=OA^2=R^2
b: Xét tứ giác MAIO có góc MIO=góc MAO=90 độ
nên MAIO là tứ giác nội tiếp
1: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI\(\perp\)CD
Xét tứ giác OIAM có \(\widehat{OIM}=\widehat{OAM}=90^0\)
nên OIAM là tứ giác nội tiếp
=>O,I,A,M cùng thuộc một đường tròn
2: ΔOAM vuông tại A
=>\(AO^2+AM^2=MO^2\)
=>\(AM^2=\left(\dfrac{3R}{2}\right)^2-R^2=\dfrac{5}{4}R^2\)
Xét (O) có
\(\widehat{MAC}\) là góc tạo bởi tiếp tuyến AM và dây cung AC
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{MAC}=\widehat{ADC}\)
Xét ΔMAC và ΔMDA có
\(\widehat{MAC}=\widehat{MDA}\)
\(\widehat{AMC}\) chung
Do đó: ΔMAC~ΔMDA
=>\(\dfrac{MA}{MD}=\dfrac{MC}{MA}\)
=>\(MC\cdot MD=MA^2=\dfrac{5}{4}R^2\)