Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
a) Delta phương trình đó rồi xét 2 trường hợp
b) phần à delta lên sẽ tìm được m rồi thế vào là xong
Chắc vậy không chắc cho nắm
\(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2\ge0\forall m\)
=> phương trình luôn có nghiêm zới \(\forall m\)
ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}=>x^2_1+x^2_2}=m^2-2m+2\)
ta có \(A=\frac{2x_1x_2+3}{x^2_1+x^2_2+2\left(x_1x_2+1\right)}=\frac{2m+1}{m^2+2}\)
=> \(A-1=\frac{-\left(m-1\right)^2}{m^2+2}\le0\forall m\)
=>\(A\le1\)
dấu = xảy ra khi zà chỉ khi m=1
Phương trình hoành độ giao điểm: \(x^2-mx+m-1=0\)
Do \(a+b+c=0\Rightarrow\) pt luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\)
Hay d luôn có điểm chung với (P)
Để d và (P) tiếp xúc nhau \(\Leftrightarrow\) pt có nghiệm kép
\(\Rightarrow x_1=x_2\Rightarrow m-1=1\Rightarrow m=2\)
\(A=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2m+1}{m^2+2}\)
\(\Leftrightarrow A.m^2-2m+2A-1=0\)
\(\Delta'=1-A\left(2A-1\right)=-2A^2+A+1\ge0\Rightarrow-\frac{1}{2}\le A\le1\)
\(\Rightarrow A_{max}=1\) khi \(m=1\)
\(A_{min}=-\frac{1}{2}\) khi \(m=-2\)
Giả sử ta định m sao cho pt \(x^2-mx+m-1=0\left(1\right)\) luôn có nghiệm.
Theo định lí Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(C=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)
\(\Rightarrow C\left(m^2+2\right)=2m+1\Rightarrow Cm^2-2m+\left(2C+1\right)=0\left(2\right)\)
Coi phương trình (2) là phương trình ẩn m tham số C, ta có:
\(\Delta'=1^2-C.\left(2C+1\right)=-2C^2-C+1\)
Để phương trình (2) có nghiệm thì:
\(\Delta'\ge0\Rightarrow-2C^2-C+1\ge0\)
\(\Leftrightarrow\left(2C-1\right)\left(C+1\right)\le0\)
\(\Leftrightarrow-1\le C\le\dfrac{1}{2}\)
Vậy \(MinC=-1;MaxC=\dfrac{1}{2}\)
1) y= 2x-4
HD: y=ax+b
.... song song: a=2 và b≠-1
..... A(1;-2) => x=1 và y=-2 và Δ....
a+b=-2
Hay 2+b=-2 (thay a=2)
<=> b=-4
KL:................
2) Xét PT hoành độ giao điểm của (P) và (d)
x2=2(m-1)x-m+3 ⇔x2-2(m-1)x+m-3 =0 (1)
*) Δ'= (1-m)2-m+3= m2-3m+4=m2-2.\(\dfrac{3}{2}\)m+\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\)=\(\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\). Vậy PT (1) có 2 nghiệm phân biệt x1; x2.
*) Theo hệ thức Viet ta có:
S=x1+x2=2(m-1) và P=x1.x2=m-3
*) Ta có: \(M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
Thay S và P vào M ta có:
\(M=\left[2\left(m-1\right)\right]^2-2.\left(m-3\right)=4m^2-10m+10\\ =\left(2m\right)^2-2.2m.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}=\left(2m-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\)
Vì (...)2≥0 nên M= (...)2+\(\dfrac{15}{4}\)≥\(\dfrac{15}{4}\)
Vậy M nhỏ nhất khi M=\(\dfrac{15}{4}\) khi 2m-\(\dfrac{5}{2}\)=0
Pt hoành độ giao điểm: \(x^2-mx+m-1=0\)
\(a+b+c=1-m+m-1=0\) \(\Rightarrow\) pt luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\)
\(A=\frac{2\left(m-1\right)+3}{1+\left(m-1\right)^2+2\left(m-1\right)+2}=\frac{2m+1}{m^2+2}\Leftrightarrow A.m^2-2m+2A-1=0\)
\(\Delta'=1-A\left(2A-1\right)=-2A^2+A+1\ge0\) \(\Rightarrow\frac{-1}{2}\le A\le1\)
\(\Rightarrow\left\{{}\begin{matrix}A_{max}=1\Rightarrow m=1\\A_{min}=\frac{-1}{2}\Rightarrow m=-2\end{matrix}\right.\)
bạn chỉ rõ đoạn -1A^2+A+1\(\ge\)0 được không