K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2022

a: =>mx-2x+my-y=1

=>m(x+y)-2x-y-1=0

Điểm mà (d) luôn đi qua có tọa độ là:

x+y=0 và -2x-y=1

=>x=-1/3; y=1/3

b: \(d\left(O;d\right)=\dfrac{\left|0\cdot\left(m-2\right)+0\cdot\left(m-1\right)-1\right|}{\sqrt{\left(m-2\right)^2+\left(m-1\right)^2}}=\dfrac{1}{\sqrt{2m^2-6m+5}}\)

Để d lớn nhất thì \(A=\sqrt{2m^2-6m+5}_{MIN}\)

\(A=\sqrt{2\left(m^2-3m+\dfrac{5}{2}\right)}\)

\(=\sqrt{2\left(m^2-3m+\dfrac{9}{4}+\dfrac{1}{4}\right)}\)

\(=\sqrt{2\left(m-\dfrac{3}{2}\right)^2+\dfrac{1}{2}}>=\dfrac{1}{\sqrt{2}}\)

Dấu = xảy ra khim=3/2

28 tháng 11 2022

a:=>mx-2x+my-y-1=0

=>m(x+y)-2x-y-1=0

Điểm A có tọa độ là:

x+y=0 và -2x-y-1=0

=>x+y=0 và 2x+y+1=0

=>x=-1; y=1

b: \(d\left(O;d\right)=\dfrac{\left|\left(m-2\right)\cdot0+\left(m-1\right)\cdot0+\left(-1\right)\right|}{\sqrt{\left(m-2\right)^2+\left(m-1\right)^2}}=\dfrac{1}{\sqrt{2m^2-6m+5}}\)

Để d lớn nhất thì \(A=\sqrt{2m^2-6m+5}_{MIN}\)

\(=\sqrt{2\left(m^2-3m+\dfrac{9}{4}+\dfrac{1}{4}\right)}=\sqrt{2\left(m-\dfrac{3}{2}\right)^2+\dfrac{1}{2}}>=\dfrac{1}{\sqrt{2}}\)

Dấu = xảy ra khi m=3/2

15 tháng 12 2021

\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)

\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)

Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua

\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)

Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)

Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)

\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

Đặt \(OH^2=t\)

\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)

28 tháng 11 2022

a: Tọa độ điểm mà (D) luôn đi qua là:

x=0 và y=k*0+3=3

b: y=kx+3

=>kx-y+3=0

\(d\left(O;d\right)=\dfrac{\left|k\cdot0+\left(-1\right)\cdot0+3\right|}{\sqrt{k^2+1}}=\dfrac{3}{\sqrt{k^2+1}}\)

Để d=2 thì \(\sqrt{k^2+1}=\dfrac{3}{\sqrt{2}}\)

=>k^2+1=9/2

=>k^2=7/2

hay \(k=\pm\dfrac{\sqrt{14}}{2}\)

c: Để d lớn nhất thì \(\sqrt{k^2+1}_{MIN}\)

=>k=0

AH
Akai Haruma
Giáo viên
30 tháng 12 2020

Lời giải:a) Gọi $M(x_0,y_0)$ là điểm cố định mà $(d)$ luôn đi qua với mọi giá trị của $m$. Ta chỉ cần chỉ ra $x_0,y_0$ có tồn tại là được.

$M\in (d), \forall m$

$\Leftrightarrow y_0=(m-2)x_0+2, \forall m$

$\Leftrightarrow mx_0+(2-2x_0-y_0)=0, \forall m$

\(\Leftrightarrow \left\{\begin{matrix} x_0=0\\ 2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_0=0\\ y_0=2\end{matrix}\right.\) 

Vậy $(d)$ luôn đi qua điểm cố định $(0,2)$ (đpcm)

b) Gọi $A,B$ lần lượt là giao điểm của $(d)$ với trục $Ox,Oy$

Dễ thấy $A(\frac{-2}{m-2},0)$ và $B(0,2)$

Áp dụng hệ thức lượng trong tam giác vuông, nếu khoảng cách từ $O$ đến $(d)$ là $h$ thì:

\(\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}=\frac{(m-2)^2}{4}+\frac{1}{4}\)

Để $h=1$ thì \((m-2)^2+1=4\Leftrightarrow m=\pm \sqrt{3}-2\)

c) Để $h_{\max}$ thì $\frac{(m-2)^2+1}{4}$ min

$\Leftrightarrow (m-2)^2+1$ min

Dễ thấy $(m-2)^2+1$ đạt giá trị min bằng $1$ khi $m-2=0\Leftrightarrow m=2$

25 tháng 8 2023

còn cách nào ngoài cách áp dụng công thức HTLG ko