K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2019

\(\widehat{MKH}=\widehat{MCH}\)

c) Tam giác COA=tam giác BOA ( tự chứng minh)

=> \(\widehat{COA}=\widehat{BOA}\)(1)

Ta có: MK//OC ( cùng vuông AC)

     MH//OA ( cùng vuông BC)

=> \(\widehat{KMH}=\widehat{AOC}\)(2)

Tương tự chứng minh đc: \(\widehat{HMI}=\widehat{AOB}\)(3)

Từ 1, 2, 3 => \(\widehat{KMH}=\widehat{HMI}\)(4)

Tứ giác KMHC nội tiếp ( tự chứng minh)

=> \(\widehat{MKH}=\widehat{MCH}\)( cùng chắn cung MH) (5)

Tứ giác MIBH nội tiếp ( tự chứng minh)

=> \(\widehat{MHI}=\widehat{MBI}\) (cùng chắn cung MI)(6)

Mà \(\widehat{MCH}=\widehat{MBI}\)( cùng chắn cung MB của đường tròn (O)) (7)

Từ (5), (6), (7)

=> \(\widehat{MKH}=\widehat{MHI}\)(8)

Xét tam giác KMH và tam giác HMI có:

\(\widehat{KMH}=\widehat{HMI}\)(theo (4))

\(\widehat{MKH}=\widehat{MHI}\)( theo (8)

=> tam giác KMH đông dạng tam giác HMI

16 tháng 4 2017

1) Xét (o) có :

Tiếp tuyến AB (o) => góc OBA =90(theo tính chất tiếp tuyến của đường tròn)

Tiếp tuyến AC(O)=> góc OCA =90 (theo trên)

xét tứ giác ABOC có:

góc OBA+góc OCA =180 (cmt)

=> tứ giác ABOC là tứ giác nt (dhnb)

Mặt khác : MH vuông góc với BC (theo đề bài )=>góc BHM =90

MI vuông góc với AB (theo đề bài )=>góc BIM = 90

Xét tứ giác BIMH có:

góc BHM+BIM=180 (cmt)

=>tứ giác BIMH là tứ giác  nt

2) theo hệ thức lượng áp dụng vào tam giác HIK ta có :

MH^2=MI . MK

3)

CM góc thì mình không biết đâu nhé!

29 tháng 12 2015

qwertyuiop[ư\';lkjhgfdsazxcvbnm,./\';lkjhgfdsaqwwertyuiop[ư

13 tháng 12 2016

. . A B C D M H I

a) Xét (O) có OB \(\perp\) CD

=> H là trung điểm của CD

=> HC=HD

Xét tứ giác ODBC có: H là trung điểm của OB,CD

=> tứ giác ADBC là hình bình hành

Mà: OC=OD(gt)

=> tứ giác ADBC là hình thoi

b)Vì tứ giác ADBC là hình thoi

=> OC=BC

Mà OC=OB(=R)

=> OC=OB=BC

=> ΔOBC là tam giác đều

=> góc BOC =60

c) Có: OB=BC(cmt)

Mà: OB=BM

=> OB=BC=BM

Xét ΔOCM có CB là đường trung tuyến

Mà: BC=OB=BM(cmt)

=> ΔOCM vuông tại C

=> góc ACM=90

=> MC là tiếp tuyến của (O)

Xét ΔOCM vuông tại C nên:

\(OM^2=OC^2+CM^2\) ( theo đl pytago)

=> \(MC^2=OM^2-OC^2=4R^2-R^2=3R^2\)

=> \(MC=\sqrt{3}R\)

d) Vì ODBC là hình thoi (cmt)

=> OB là đường phân giác của góc COD

=> góc COH= góc DOH

Có: góc COH+ góc HOI =90

hay: góc DOH+ góc HOI = 90

Mà: góc HOI+ góc HIO =90

=> DOH = góc HIO

Xét ΔHOI và ΔHDO có:

góc OHI : góc chung

góc HIO = góc DOH(cmt)

=> ΔHOI ~ΔHDO

=> \(\frac{OH}{HD}=\frac{HI}{OH}\Rightarrow HI\cdot HD=OH^2\)

CHứng minh tương tự ta cũng có:

\(HB\cdot HM=HC^2\)

Xét ΔOCH vuông tại H

=> \(OH^2+HC^2=OC^2\)

Nên: \(HI\cdot HD+HB\cdot HM=OH^2+HC^2=OC^2=R^2\)

14 tháng 12 2016

câu d) àm vậy cũng đúng nhưng dài quá, đòi hỏi phải biết kiếm tam giác đồng dạng, thật khó ở chỗ này

mình mới tìm ra cách giải mới

HI.HD = HI.HC= OH2

HB.HM= OH.HM=CH2

cộng vế với vế ta được: HI.HD +HB.HM = OH2 + CH2 =OC2 =R2

13 tháng 2 2020

B C D H I M O

a ) Xét \(\left(O\right)\)có \(OB\perp CD\)

\(\Rightarrow H\)là trung điểm của CD

\(\Rightarrow HC=HD\)

Xét tứ giác \(ODBC\)có : 

H là trung điểm của OB và CD

\(\Rightarrow\)tứ giác ADBC là hình thoi 

b ) Vì tứ giác ADBC là hình thoi 

\(\Rightarrow OC=BC\)

Mà \(OC=OB\left(=R\right)\)

\(\Rightarrow OC=OB=BC\)

\(\Rightarrow\Delta OBC\)là tam giác đều 

\(\Rightarrow\widehat{BOC}=60^0\)

c ) Ta có : OB = BC (cmt)

Mà OB = BM 

\(\Rightarrow OB=BC=BM\)

Xét \(\Delta OCM\)có : 

CB là đường trung tuyến 

Mà : \(BC=OB=BM\left(cmt\right)\)

\(\Rightarrow\Delta OCM\)vuông tại C nên :
\(OM^2=OC^2+CM^2\)( theo định lí Py - ta - go )

\(\Rightarrow MC^2=OM^2-OC^2=4R^2-R^2=3R^2\)

\(\Rightarrow MC=\sqrt{3}R\)

d ) Vì ODBC là hình thoi ( cmt )
\(\Rightarrow OB\)là đường phân giác của \(\widehat{COD}\)

\(\Rightarrow\widehat{COH}=\widehat{DOH}\)

Có : \(\widehat{COH}+\widehat{HOI}=90^0\)

Hay \(\widehat{DOH}+\widehat{HOI}=90^0\)

Mà \(\widehat{HOI}+\widehat{HIO}=90^0\)

\(\Rightarrow\widehat{DOH}=\widehat{HIO}\)

Xét \(\Delta HOI\)và \(HDO\)có :
\(\widehat{OHI}\): góc chung 

\(\widehat{HIO}=\widehat{DOH}\left(cmt\right)\)

\(\Rightarrow\Delta HIO~\Delta HDO\)

\(\Rightarrow\frac{OH}{HD}=\frac{HI}{OH}\Rightarrow HI.HD=OH^2\)

Chứng minh tương tự ta cũng có :
\(HB.HM=HC^2\)

Xét \(\Delta OCH\)vuông tại H 

\(\Rightarrow OH^2+HC^2=OC^2\)

Nên : \(HI.HD+HB.HM=OH^2+HC^2=OC^2=R^2\)

Chúc bạn học tốt !!!

12 tháng 4 2021

_undefined