Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔCOA và ΔDOB :
CA=DB( gt)
∠CAO=∠DBO (gt)
AO=OB
=> ΔCOA=ΔDOB (c-g-c) => ∠AOC =∠BOD
Lại có ∠DOB + ∠BOC= ∠BOC +∠COA =∠AOB=1800
=> ∠DOC =1800=> C,O,D thẳng hàng
CMTT
=> ΔAEO =ΔBFO( c-g-c)
=>∠AOE=∠BOF
=> ∠EOF =∠AOP + ∠AOE= ∠AOF + ∠BOF =∠AOB=1800
=> E,O,F thẳng hàng
Tham khảo:
Kí hiệu tam giác vt là t/g nhé
a) Xét t/g AOC và t/g BOD có:
OA = OB (gt)
CAO = DBO (gt)
AC = BD (gt)
Do đó, t/g AOC = t/g BOD (c.g.c)
=> OC = OD (2 cạnh tương ứng) (1)
Tương tự ta cũng có t/g AOE = t/g BOF (c.g.c)
=> OE = OF (2 cạnh tương ứng) (2)
(1) và (2) là đpcm
b) t/g AOC = t/g BOD (câu a)
=> AOC = BOD (2 góc tương ứng)
Mà AOC + COB = 180o ( kề bù)
nên BOD + COB = 180o
=> COD = 180o
=> C,O,D thẳng hàng
trường hợp c` lại tương tự
c) Có: AC = BD (gt); AE = BF (gt)
=> AE - AC = BF - BD ( vì hình của mk AE > AC c` nếu hình bn vẽ AC > AE thì ngược lại)
=> EC = FD
Vì BAx = ABy mà 2 góc này ở vị trí so le trong nên Ax // By
Xét t/g CEO và t/g DFO có:
CEO = DFO (so le trong)
EC = FD (cmt)
ECO = FDO (so le trong)
Do đó, t/g CEO = t/g DFO (g.c.g)
=> CO = DO (2 cạnh tương ứng)
EO = FO (2 cạnh tương ứng)
Từ đó dễ dàng suy ra t/g COF = t/g DOE (c.g.c)
=> CF = DE (2 cạnh tương ứng) (đpcm)
Tham khảo
Kí hiệu tam giác vt là t/g nhé
a) Xét t/g AOC và t/g BOD có:
OA = OB (gt)
CAO = DBO (gt)
AC = BD (gt)
Do đó, t/g AOC = t/g BOD (c.g.c)
=> OC = OD (2 cạnh tương ứng) (1)
Tương tự ta cũng có t/g AOE = t/g BOF (c.g.c)
=> OE = OF (2 cạnh tương ứng) (2)
(1) và (2) là đpcm
b) t/g AOC = t/g BOD (câu a)
=> AOC = BOD (2 góc tương ứng)
Mà AOC + COB = 180o ( kề bù)
nên BOD + COB = 180o
=> COD = 180o
=> C,O,D thẳng hàng
trường hợp c` lại tương tự
c) Có: AC = BD (gt); AE = BF (gt)
=> AE - AC = BF - BD ( vì hình của mk AE > AC c` nếu hình bn vẽ AC > AE thì ngược lại)
=> EC = FD
Vì BAx = ABy mà 2 góc này ở vị trí so le trong nên Ax // By
Xét t/g CEO và t/g DFO có:
CEO = DFO (so le trong)
EC = FD (cmt)
ECO = FDO (so le trong)
Do đó, t/g CEO = t/g DFO (g.c.g)
=> CO = DO (2 cạnh tương ứng)
EO = FO (2 cạnh tương ứng)
Từ đó dễ dàng suy ra t/g COF = t/g DOE (c.g.c)
=> CF = DE (2 cạnh tương ứng) (đpcm)
a: Xét tứ giác ACBD có
AC//BD
AC=BD
Do đó: ACBD là hình bình hành
Suy ra: Hai đường chéo AB và CD cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm của AB
nên O là trung điểm của CD
=>C,O,D thẳng hàng
b: Xét tứ giác AEBF có
AE//BF
AE=BF
Do đó: AEBF là hình bình hành
Suy ra: Hai đường chéo AB và FE cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm của AB
nên O là trung điểm của FE
hay F,O,E thẳng hàng
1: Xét tứ giác ACBD có
AC//BD
AC=BD
=>ACBD là hbh
=>O là trung điểm chung của AB và CD
2: Xét tứ giác AEBF có
AF//BE
AF=BE
=>AEBF là hbh
=>O là trung điểm của EF
A B x y o C E D F AE = BF
Thứ nhất phải nói, công cụ vẽ hình quá sơ sài :)
a/ cm C, O , D thẳng hàng.
Xét tam giác AOC và tam giác BOD ta có:
AO = OB(O là trung điểm của AB) (1)
AC = BD (gt) (2)
góc CAO = góc DBO (2 góc so le trong , Ax//By) (3)
Từ (1),(2),(3) => tam giác AOC và tam giác BOD (c-g-c)
=> góc AOC = góc BOD (2 góc tương ứng).
Ta có :
góc AOC + góc COD = 1800 (2 góc kề bù) (1)
góc AOC = góc BOD (cmt) (2)
Từ (1),(2) => góc BOD + góc COD = 1800
=> góc COD = 1800
=> C, O , D thẳng hàng.
C/m E,O,F thẳng hàng.
bạn tự chứng minh theo cách trên.
b/ cm DE = CF và DE// CF
Ta có :
AE = BF (gt) (1)
AC = BD (gt) (2)
Từ (1),(2)=> AE - AC = BF - BD
=> CE = DF
Xét tam giác DEC và tam giác CFD ta có:
CD = CD (cạnh chung) (1)
CE = FD (cmt) (2)
góc ECD = góc FDC (2 góc so le trong, Ax//By) (3)
Từ (1),(2),(3) => tam giác DEC = tam giác CFD (c-g-c)
=> DE = CF (2 cạnh tương ứng)
Ta có :
góc CDE = góc DCF ( tam giác DEC = tam giác CFD)
mà góc CDE và góc DCF nằm ở vị trí so le trong
nên DE //CF
Xinh xắn z bn ả đại diện của bn ý