Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A M B N C D
a) Trên đoạn thẳng AC ta có : AB < AC ( 5cm < 12cm )
\(\Rightarrow\)B nằm giữa A và C
\(\Rightarrow AB+BC=AC\)
\(5+BC=12\)
\(BC=12-5\)
\(BC=7\)
Vậy BC = 7cm
b) Ta có : M là trung điểm của AB
\(\Rightarrow AM=MB=\frac{AB}{2}=\frac{5}{2}=2,5\left(cm\right)\)
Ta có : N là trung điểm của BC
\(\Rightarrow BN=NC=\frac{BC}{2}=\frac{7}{2}=3,5\left(cm\right)\)
Ta có : MN = MB + BN
MN = 2,5 + 3,5
MN = 6 ( cm )
Vậy MN = 6cm
c) Ta có : CB và CD là 2 tia đối nhau
\(\Rightarrow\)C nằm giữa B và D (1)
mà BC = CD ( = 7cm ) (2)
từ (1) và (2) \(\Rightarrow\)C là trung điểm của BD
a) Có AB < AC(5cm < 12cm) nên điểm B nằm giữa hai điểm A và C
Vì điểm B nằm giữa hai điểm A và C nên ta có :
AB + BC = AC
=> 5 + BC = 12
=> BC = 7(cm)
b) Vì M là trung điểm của đoạn thẳng AB nên MB = 1/2AB = 1/2.5 = 2,5(cm)
Vì N là trung điểm của đoạn thẳng BC nên NB = 1/2BC = 1/2.7 = 3,5(cm)
=> MB + NB = 2,5 + 3,5 = 6(cm) = MN
c) Vì D là tia đối của tia CA nên điểm C nằm giữa B và D
Mà BC = CD = 7(cm) nên C là trung điểm của đoạn thẳng BD.
+) Trường hợp 1 : Nếu AC < a . Đặt AC = b
M là trung điểm của AC <=> CM = AC/2 =b/2
C thuộc tia đối của tia AB nên A nằm giữa C và B <=> CA + AB = CB => b + a = CB
N là trung điểm của BC <=> CN = CB/2 = ( a + b ) / 2
Trên cùng tia CB có : CM < CN ( vì b/2 < ( a+b ) /2 - b2 = a/2
+) Trường hợp 1: Nếu AC < a. Đặt AC = b
A C B M N
M là trung điểm của AC => CM = AC/2 = b/2
C thuộc tia đối của tia AB nên A nằm giữa C và B => CA + AB = CB => b + a = CB
N là trung điểm của BC => CN = CB/2 = (a+ b) /2
Trên cùng tia CB có: CM < CN (vì b/2 < (a+b)/2) => M nằm giữa C và N
=> CM + MN = CN => b/2 + MN = (a+ b)/2 => MN = (a+b)/2 - b/2 = a/2
+) Trường hợp 2: Nếu AC = AB (b = a)
Vì A nằm giữa C và B ; CA = AB => A là trung điểm của CB.Mà M là trung điểm của CB nên M trùng với A => MN = MA
Ta có: M là trung điểm của CA => MA = AC/2 = b/2 = a/2
=> MN = a/2
+) Trường hợp 3: Nếu AC > AB (b > a)
A C B M N
M là trung điểm của AC => CM = AC/2 = b/2
C thuộc tia đối của tia AB nên A nằm giữa C và B => CA + AB = CB => b + a = CB
N là trung điểm của BC => CN = CB/2 = (a+ b) /2
Trên cùng tia CB có: CM < CN (vì b/2 < (a+b)/2) => M nằm giữa C và N
=> CM + MN = CN => b/2 + MN = (a+ b)/2 => MN = (a+b)/2 - b/2 = a/2
Vậy MN = a/2