Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi trung điểm của AB là I
Ta có tam giác AMI vuông tại I. Theo định lý Pytago ta có
AM2 = AI2 + MI2 = 62 + 82 = 100 ⇒ AM = 10cm
Chọn B
a] Áp dụng định lí Py - ta - go vào tam giác vuông ABC có ;
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\) \(AC^2=BC^2-AB^2\)
\(\Leftrightarrow\) \(AC^2=10^2-6^2\)
\(\Leftrightarrow\) \(AC^2=64\)
\(\Rightarrow\) \(AC=8cm\)
Ta có ; \(AB=6cm\) , \(AC=8cm\) , \(BC=10cm\)
\(\Rightarrow\) \(BC\)lớn hơn \(AC\) lớn hơn \(AB\)
\(\Leftrightarrow\) góc \(A\) lớn hơn góc \(B\) lớn hơn góc \(C\) [ theo quan hệ giữa cạnh và góc đối diện ]
A B C D E M
a. Xét tam giác ABC \(⊥\) A
BC2=AB2+AC2 (Pytago)
102=82+AC2 => AC=10cm
b. Xét tam giác BCD có \(\frac{BM}{AB}=\frac{\frac{16}{3}}{8}=\frac{2}{3}\)
=> M là trực tâm cuả tam giác BCD
c. Ta có: DM là đttuyến của tam giác BCD mà DE cũng là đttuyến của tam giác BCD ( BE=CE)
=> DM trùng DE=> D, M, E thẳng hàng
a) Xét \(\Delta\)ABC có: BC > AC > AB ( vì 10 > 8 > 6)
=> \(\widehat{A}>\widehat{B}>\widehat{C}\)
Ta có: BC2 = AB2 + AC2 (vì 102 = 62 + 82)
=> \(\Delta ABC\)vuông tại A
=> \(\widehat{A}=90^0\)
Vậy \(\widehat{A}>\widehat{B}>\widehat{C}\)và \(\widehat{A}=90^0\).
Phần b) c) d) bạn tham khảo tại đây nhé : https://olm.vn/hoi-dap/question/1216956.html
Bạn vẽ hình ra nhé,rồi xem cách giải của mình:
a) Xét tam giác ABC ta có : \(BC^2=AB^2+AC^2\)( Định lí Pytago)
=>\(BC^2\) =\(6^2-8^2\)=100
=> BC = \(\sqrt{100}\) =10cm
b)Xét tam giác vuông BAI và tam giác vuông BHI, ta có:
BI là cạnh huyền chung
Góc ABI= Góc HBI (gt)
=> tam giác BAI = tam giác BHI (ch-gn)
=> AB=BH (2 cạnh tương ứng )(1)
Xét tam giác AIK và tam giác HIK, ta có:
AI=HI (2 cạnh tương ứng của tam giác BAI = BHI)
Góc AIK= Góc HIC( 2 góc đối đỉnh)
Góc IAK = IHC (g-c-g)
=> AK= HC( 2 cạnh tương ứng ) (2)
Từ (1) và (2), ta => AB+AK=BH+HC
=> BK=BC
c)Vẽ IN ll BC => IN vuông góc KH
Vẽ IM ll AB => IM vuông góc IC
Ta có : tam giác BNI = Tam giác IMB (g-c-g)
=> IN=BM(2 cạnh tương ứng)
Xét tam giác BNI : IB<IN+BN( BĐT tam giác )
hay IB<BN+BM (1)
Xét tam giác vuông NIK : IK<NK( cạnh góc vuông < cạnh huyền)(2)
Xét tam giác vuông MIC : IC<MC(cạnh góc vuông< cạnh huyền)(3)
Từ (1),(2),(3). Cộng theo vế, ta có :
IB+IK+IC<BN+NK+BM+MC
IB+IK+IC<BK+BC
IB+IK+IC<2BC
IB+IK+IK<2.10=20cm ( đpcm)
câu d mình k hiểu trung trực của bd và cd bạn ns rõ ra mình làm cho
Gọi trung điểm của AB là I
Ta có tam giác AMI vuông tại I. Theo định lý Pytago ta có
IM2 = AM2 - AI2 = 62 - 42 = 20 ⇒ IM = 20 c m . Chọn C