K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2018

A B C O I K E M N G

a) Xét đường tròn (O) bán kính AB có điểm E nằm trên cung AB => ^AEB=900 hay ^MEN=900

Tương tự ^CNB=^AMC=900 => ^EMC=^ENC=900.

Xét tứ giác MENC: ^MEN=^EMC=^ENC=900 => Tứ giác MENC là hình chữ nhật.

=> MN=EC (đpcm).

b) Gọi G là tâm của hình chữ nhật MANC => GN=GC.

Xét \(\Delta\)GCK và \(\Delta\)GNK: GC=GN; GK chung; CK=NK => \(\Delta\)GCK=\(\Delta\)GNK (c.c.c)

=> ^GCK=^GNK. Mà ^GCK=900 => GNK=900 => MN vuông góc NK

=> MN là tiếp tuyến của (K) với N là tiếp điểm.

Tương tự ta cũng c/m được MN là tiếp tuyến của (I) với M là tiếp điểm.

=> MN là tiếp tuyến chung của (I) và (K) (đpcm).

c) Dễ thấy \(\Delta\)ACE ~ \(\Delta\)ECB => \(\frac{AC}{CE}=\frac{CE}{CB}\Rightarrow CE^2=AC.CB\)

Thay AC=10 (cm); CB=40 (cm) vào biểu thức trên, ta có:

\(CE^2=10.40=400\Leftrightarrow CE=\sqrt{400}=20\)(cm)

Lại có CE=MN (cmt) => MN =20 (cm).

d) Ta có: \(S_{\frac{1}{2}\left(I\right)}=\frac{\left(\frac{1}{2}AC\right)^2.3,14}{2}=\frac{\left(\frac{1}{2}.10\right)^2.3,14}{2}=39,25\)(cm2)

\(S_{\frac{1}{2}\left(K\right)}=\frac{\left(\frac{1}{2}CB\right)^2.3,14}{2}=\frac{\left(\frac{1}{2}.40\right)^2.3,14}{2}=628\)(cm2)

\(S_{\frac{1}{2}\left(O\right)}=\frac{\left[\frac{1}{2}\left(AC+CB\right)\right]^2.3,14}{2}=\frac{\left(\frac{1}{2}.50\right)^2.3,14}{2}=981,25\)(cm2)

\(\Rightarrow S_{G.H}=S_{\frac{1}{2}\left(O\right)}-\left(S_{\frac{1}{2}\left(I\right)}+S_{\frac{1}{2}\left(K\right)}\right)=981,25-\left(39,25+628\right)=314\)(cm2)

(Chú thích \(S_{G.H}:\)Diện tích hình được giới hạn bở 3 nửa đường tròn).

ĐS:...

17 tháng 7 2020

O I K A E B H F C D G 1 1 2 2

a)

IO = OB – IB => (I) tiếp xúc trong với (O).

OK = OC – KC => (K) tiếp xúc trong với (O)

IK = OH + KH => (I) tiếp xúc ngoài với (K)

b)

Tứ giác AEHF có \(\widehat{A}=\widehat{E}=\widehat{F}=90^o\)   nên là hình chứ nhật

c)

c) \(\Delta AHB\) vuông nên AE.AB = AH2

\(\Delta AHC\)vuông nên AF . AC = AH2

Suy ra AE . AB = AF . AC

d) Gọi G là giao điểm của AH và EF

Tứ giác AEHF là hình chữ nhật => AH = EF

Ta có : GE = GH => \(\Delta GEH\)\(\Rightarrow\widehat{E_1}=\widehat{H_1}\)

Ta lại có \(\Delta IHE\)cân \(\Rightarrow\widehat{E_2}=\widehat{H_2}\)

\(\Rightarrow\widehat{E_1}+\widehat{E_2}=\widehat{H_1}+\widehat{H_2}=90^o\)

Do đó EF là tiếp tuyến của đường tròn (I)

Tương tự, EF là tiếp tuyến của đường tròn (K)

e) - Cách 1:

Ta có: \(EF=AH\le OA\) ( OA có độ dài không đổi )

Do đó EF lớn nhất khi AH = OA

<=> H trùng O hay dây AD đi qua O.

Vậy khi dây AD vuông góc với BC tại O thì EF có độ dài lớn nhất.

14 tháng 2 2020

M A C x B D y H K O I

a) Tam giác AMC vuông tại M có MH là đường cao 

\(\Rightarrow MH=\sqrt{AH.BH}\)( hệ thức lượng trong tam giác vuông )
\(\Rightarrow MH=\sqrt{15}\left(cm\right)\)

b) Vì AC song song với BD nên ta có : \(\frac{AC}{BD}=\frac{AI}{ID}=\frac{CM}{MD}\)( vì \(AC=CM;BD=MD\))

\(\Rightarrow MI//AC\)mà \(MH//AC\) ( cùng vuông góc với AB )
 

Suy ra \(M,I,H\)thẳng hàng

c ) Đặt \(AB=a,AM=c,BM=b\)

Ta có:

\(AK=\frac{a+c-b}{2};BK=\frac{a+b-c}{2}\)

\(\Rightarrow AK.BK=\frac{a+c-b}{2}.\frac{a+b-c}{2}=\frac{1}{2}.\left[\frac{\left(a+c-b\right)\left(a+b-c\right)}{2}\right]\)

\(=\frac{1}{2}\left[\frac{a^2-\left(b-c\right)^2}{2}\right]=\frac{1}{2}\left[\frac{a^2-\left(b^2+c^2\right)+2bc}{2}\right]\)

\(=\frac{1}{2}.\frac{2bc}{2}=\frac{1}{2}.bc=\frac{1}{2}AM.MB=S_{AMB}\)

Vậy \(S_{AMB}=AK.KB\)

Chúc bạn học tốt !!!

1 tháng 2 2022
21 tháng 2 2022

a) Vì AH, HB, AB đều là các đường kính của các nửa đường tròn (O1) , (O2) và (O) nên tứ giác MPHQ có ba góc P, Q, M vuông. Vì vậy nó là hình chữ nhật.

Từ đó, ta có HM = PQ.
b) Vì MHPQ là hình chữ nhật nên \widehat{MPQ}=\widehat{MHQ}=\widehat{MBH}\left(=\dfrac{\stackrel\frown{HQ}}{2}\right)MPQ=MHQ=MBH(=2HQ), do đó APQB là tứ giác nội tiếp.

c) Ta có \widehat{O_1PA}=\widehat{PAO_1}=90^o-\widehat{HMP}=90^o-\widehat{MPQ}O1PA=PAO1=90oHMP=90oMPQ

\Rightarrow\widehat{O_1PA}+\widehat{MPQ}=90^o\Rightarrow\widehat{O_1PQ}=90^oO1PA+MPQ=90oO1PQ=90o nên PQ tiếp xúc nửa đường tròn (O1) tại P. 

Tương tự , PQ tiếp xúc (O2) tại Q hay PQ là tiếp tuyến chung của hai nửa đường tròn (O1) và (O2)

6 tháng 5 2017

a) kéo dài O1E,O2F cắt CD ở M và N 

b) góc BFI + góc BEI =180 

c) gọi AB cắt EF ở K 

bằng đồng dạng ta chứng minh được KE=KF=KB.KA(đpcm)

16 tháng 11 2021

Dễ mà tự làm đi =))

24 tháng 6 2017

Tính chất hai tiếp tuyến cắt nhau

Tính chất hai tiếp tuyến cắt nhau