K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2024

A B M C D K E F

a/

Xét \(\Delta AMD\) và \(\Delta BMC\) có

MD = MB (cạnh tg đều BMD) (1)

MA = MC (cạnh tg đều AMC) (2)

\(\widehat{AMD}=\widehat{AMB}-\widehat{BMD}=180^o-60^o=120^o\)

\(\widehat{BMC}=\widehat{AMB}-\widehat{AMC}=180^o-60^o=120^o\)

\(\Rightarrow\widehat{AMD}=\widehat{BMC}=120^o\) (3)

Từ (1) (2) (3) => \(\Delta AMD=\Delta BMC\left(c.g.c\right)\Rightarrow AD=BC\)

b/

Xét \(\Delta AEM\) và \(\Delta CFM\) có

MA = MC (cạnh tg đều AMC) (4)

\(AD=BC\left(cmt\right);AE=\dfrac{AD}{2};CF=\dfrac{BC}{2}\Rightarrow AE=CF\) (5)

\(\Delta AMD=\Delta BMC\left(cmt\right)\Rightarrow\widehat{MAD}=\widehat{MCB}\) (6)

Từ (4) (5) (6) \(\Rightarrow\Delta AEM=\Delta CFM\left(c.g.c\right)\)

\(\Rightarrow ME=MF\) và \(\widehat{AME}=\widehat{CMF}\)

Ta có

\(\widehat{AME}+\widehat{EMC}=\widehat{AMC}=60^o\)

\(\Rightarrow\widehat{CMF}+\widehat{EMC}=\widehat{EMF}=60^o\)

=> \(\Delta MEF\) là tg đều

 

 

 

22 tháng 1 2017

7jhjjjjhbn

14 tháng 7 2016

Xét ∆ CMB có EF là đường trung bình của ∆. 
=> EF // MB <=> EF // AB. (1) 
Xét ∆ ADM có KI là đường trung bình của ∆. 
=> KI // AM <=> KI // AB. (2) 
Từ (1);(2) => Tứ giác EFIK là hình thang. (3) 
Gọi giao của CM và AD là O. 
Xét ∆ COA có EK là đương trung bình ∆. 
=> EK // CA. 
Lại có KI // AM 
Mà CA hợp với AM góc 60 độ (∆ACM đều) 
nên EK sẽ hợp với KI góc 60 độ. hay góc EKI = 60 độ. 
Chưng minh tương tự với góc FIK. => góc EKI = góc FIK = 60 độ. (4) 
Từ (3);(4) => hình thang có 2 góc ở đáy bàng nhau là hình thang cân. => đpcm

Bạn vẽ thêm hình nhé ^_^

dựa vào đâu mà bạn nói EK la đường trung bình của Tam giác COA ?

22 tháng 6 2016
vex hinhf ddi rooif minhf lamf cho
25 tháng 6 2016

vẽ hình đi 

6 tháng 10 2021

Đáp án:

a) EFIK là hình thang cân.

b) FK = 1/2 MD.

Giải thích các bước giải:

Ta có: EF là đường TB của tam giác MBC => EF // BC.

IK là đường TB của tam giác ABD => IK // AB

=> EF // IK => EFIK là hình thang.

Ta có: Gọi N là trung điểm của BC ta có EF // NC, EF = NC => EFNC là hình bình hành => FN // EC

IN là đường TB của tam giác BCD => IN // BD.

Mà BD // MC (góc MCA = góc DBC = 60 độ, mà 2 góc này ở vị trí đồng vị).

=> IN // MC

=> F, I, N thẳng hàng.

=> FI // MC.

Mà IK // AC => góc FIK = góc MCA = 60 độ.

CMTT ta có KE // MA. Mà KI // AC

=> góc EKI = góc MAC = 60 độ.

=> EFIK là hình thang cân.

=> EI = KF.

Mà EI là đường TB của tam giác CDM => EI = ½ MD

=> KF = ½ MD.

image

31 tháng 8 2017

a) MAC đều => góc MAC = 60, MBD đều => góc MBD = 60 
=> AOB là tam giác cân ( vì có 2 góc ở đáy = nhau ) 
mà 2 góc ở đáy lại = 60 => tam giác đều 

b) AOB đều => 3 cạnh bằng nhau => AB = OB 
AB = AM + MB 
OB = OD + DB 
mà AB = OB, MB = DB 
=> AM = OD, mà AM = MC => MC = OD 

MD = OC chứng minh tương tự 

c) Xét tam giác ABD và tam giác BOC: 
AB = BO 
góc ABD = góc BOC = 60 
BD = OC 
=> ABD = BOC ( c.g.c ) 
=> AD = BC 

d) ABD = BOC ( cm câu c ) => góc BAD = góc OBC 
Ta có : MC = OD, MD = OC ( cm câu b ) => MCOD là hbh => MC // OD <=> MC // OB => góc MCK = góc OBC 
=> góc BAD = góc MCK 

Vì AD = BC, AI = 1/2 AD, CK = 1/2 BC => AI = CK 

Xét tam giác MAI và tam giác MCK: 
MA = MC 
góc BAD = góc MCK 
AI = CK 
=> MAI = MCK ( c.g.c ) => MI = MK 

e) góc CEA = góc BED (đối đỉnh) 
Xét tam giác BED: BED + EDB + EBD = 180 
Xét tam giác ABD: BAD + ABD + ADB = 180 <=> BAD + ADB = 120 
mà có góc EBD = góc BAD ( vì tam giác ABD = tam giác BOC ) 
=> EDB + EBD = 120 => BED = 60 => CEA = 60

18 tháng 2 2018

hinh bn oi

17 tháng 11 2016

A B M C D E F H G P Q

EF và GH kéo dài lần lượt cắt AB tại P và Q => P,Q là trung điểm của AM và MB (bạn tự chứng minh)

Ta có : CF = FM , CG = GB  => FG là đường trung bình của tam giác CMB => FG // AB (1)

Tương tự ta chứng minh được EH cũng là đường trung bình của tam giác DAM => EH // AB (2)
Từ (1) và (2) suy ra EH // FG  => EFGH là hình thang                                     (*)

Vì P và Q là trung điểm của AM và MB nên góc EPM = góc HQM = góc CAM = 60 độ

Mà EH // AB nên góc EFH = góc HGF = 60 độ                                               (**)

Từ (*) và (**) suy ra EFGH là hình thang cân.

17 tháng 11 2016

khó vải

17 tháng 8 2016

Xét ∆ CMB có EF là đường trung bình của ∆. 
=> EF // MB <=> EF // AB. (1) 
Xét ∆ ADM có KI là đường trung bình của ∆. 
=> KI // AM <=> KI // AB. (2) 
Từ (1);(2) => Tứ giác EFIK là hình thang. (3) 
Gọi giao của CM và AD là O. 
Xét ∆ COA có EK là đương trung bình ∆. 
=> EK // CA. 
Lại có KI // AM 
Mà CA hợp với AM góc 60 độ (∆ACM đều) 
nên EK sẽ hợp với KI góc 60 độ. hay góc EKI = 60 độ. 
Chưng minh tương tự với góc FIK. => góc EKI = góc FIK = 60 độ. (4) 
Từ (3);(4) => hình thang có 2 góc ở đáy bàng nhau là hình thang cân. => đpcm

25 tháng 8 2016

Cô hướng dẫn nhé.

a. FH // MC; KH // BD (Đường trung bìnhP

Vậy mà MN // DB (Góc đồng vị bằng nhau) nên  FH và KH cùng song song một đường thẳng. Vậy F , K , H thẳng hàng. Tương tự với E, I ,N.

b. EF // CH; IK // AC nên EF // IK. Vậy EFIK là hình thang.

Lại có \(\widehat{EIK}=\widehat{ENH}=\widehat{FHN}=\widehat{FKI}\) nên nó là hình thang cân.

c. Em xem lại đề nhé.