Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(u_n=\frac{n^2+n-2}{n^2+3n}u_{n-1}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+3\right)}u_{n-1}\)
\(=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+3\right)}.\frac{\left(n-2\right)\left(n+1\right)}{\left(n-1\right)\left(n+2\right)}u_{n-2}\)
\(=....=\frac{1.4}{n\left(n+3\right)}u_2=\frac{1}{n\left(n+3\right)}\)
CASIO cx phải có tư duy chứ,nói như Mỹ Duyên thì chắc đi thi casio người ta đậu hết ko ai rớt quá
Mình viết quy trình bấm phím luôn nhé :
- Quy trình tính Un\(D=D+1:A=\sqrt[3]{B.C^2+2010}:C=B:B=A:D=D+1:A=\sqrt[3]{B^2.C+2011}:C=B:B=A\)
Bấm CALC , Máy hỏi D? -> 2
B? -> 2
C? -> 1
Bấm liên tiếp dấu "=" , D chính là trị số của Un cần tìm.
Từ đó tính được U10 = 22,063283 ; U15 = 25,562651 ; U21 = 29,008768 ; U27 = 31,791400
- Quy trình bấm phím Sn :
\(D=D+1:A=\sqrt[3]{B.C^2+2010}:X=X+A:C=B:B=A:D=D+1:A=\sqrt[3]{B^2.C+2011}:X=X+A:C=B:B=A\)
Bấm CALC , nhập D = 2 , B = 2 , C = 1 , X = 0
Bấm liên tiếp dấu "=" . D chính là trị số của Sn cần tìm.
Được S10 = 141,181370 ; S15 = 262,375538 ; S21 = 428,820575 ; S27 = 613,330707
Quy trình bấm phím Un : A chính là Un
Quy trình bấm phím Sn : X chính là Sn
Các giá trị D = 3 tức là U3 (số 3 thôi nhé) , D = 4 tức U4 ...
\(U_n=\dfrac{\left(n^2-1\right)}{n\left(n+2\right)}U_{n-1}\Rightarrow n\left(n+2\right).U_n=\left(n-1\right)\left(n+1\right).U_{n-1}\)
Đặt \(n\left(n+2\right).U_n=V_n\Rightarrow V_{n-1}=\left(n-1\right)\left(n+2-1\right).U_{n-1}=\left(n-1\right).\left(n+1\right)U_{n-1}\)
\(\Rightarrow V_n=V_{n-1}\)
\(\Rightarrow V_n=V_{n-1}=V_{n-2}=...=V_1\)
Có \(V_1=1.\left(1+2\right).U_1=1\)
\(\Rightarrow V_n=1\)
\(\Rightarrow U_n=\dfrac{V_n}{n\left(n+2\right)}=\dfrac{1}{n\left(n+2\right)}\)
\(\Rightarrow A=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2015.2017}\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\right)\)
\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)\)
\(=...\)
\(u_3=u_2+u_1\)
\(u_4=u_3+u_2=\left(u_2+u_1\right)+u_2=2u_2+u_1=\left(4-2\right)u_2+\left(4-3\right)u_1\)
\(u_5=u_4+u_3=\left(4-2\right)u_2+\left(4-3\right)u_1+u_2+u_1=\left(5-2\right)u_2+\left(5-3\right)u_1\)
...
\(\Rightarrow u_n=\left(n-2\right)u_2+\left(n-3\right)u_1\)
\(\Rightarrow u_{37}=35u_2+34u_1=...\)