K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 1 2024

\(u_3=u_2+u_1\)

\(u_4=u_3+u_2=\left(u_2+u_1\right)+u_2=2u_2+u_1=\left(4-2\right)u_2+\left(4-3\right)u_1\)

\(u_5=u_4+u_3=\left(4-2\right)u_2+\left(4-3\right)u_1+u_2+u_1=\left(5-2\right)u_2+\left(5-3\right)u_1\)

...

\(\Rightarrow u_n=\left(n-2\right)u_2+\left(n-3\right)u_1\)

\(\Rightarrow u_{37}=35u_2+34u_1=...\)

2 tháng 9 2016

Ta có :

\(u_n=\frac{n^2+n-2}{n^2+3n}u_{n-1}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+3\right)}u_{n-1}\)

\(=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+3\right)}.\frac{\left(n-2\right)\left(n+1\right)}{\left(n-1\right)\left(n+2\right)}u_{n-2}\)

\(=....=\frac{1.4}{n\left(n+3\right)}u_2=\frac{1}{n\left(n+3\right)}\)

26 tháng 7 2017

toán CASIO huh???

26 tháng 7 2017

CASIO cx phải có tư duy chứ,nói như Mỹ Duyên thì chắc đi thi casio người ta đậu hết ko ai rớt quá

15 tháng 1 2017

Khó vậy bạn

Mình mới học lớp 7

26 tháng 10 2016

Mình viết quy trình bấm phím luôn nhé :

  • Quy trình tính Un\(D=D+1:A=\sqrt[3]{B.C^2+2010}:C=B:B=A:D=D+1:A=\sqrt[3]{B^2.C+2011}:C=B:B=A\)

Bấm CALC , Máy hỏi D? -> 2

B? -> 2

C? -> 1

Bấm liên tiếp dấu "=" , D chính là trị số của Un cần tìm.

Từ đó tính được U10 = 22,063283 ; U15 = 25,562651 ; U21 = 29,008768 ; U27 = 31,791400

  • Quy trình bấm phím Sn :

\(D=D+1:A=\sqrt[3]{B.C^2+2010}:X=X+A:C=B:B=A:D=D+1:A=\sqrt[3]{B^2.C+2011}:X=X+A:C=B:B=A\)

Bấm CALC , nhập D = 2 , B = 2 , C = 1 , X = 0

Bấm liên tiếp dấu "=" . D chính là trị số của Sn cần tìm.

Được S10 = 141,181370 ; S15 = 262,375538 ; S21 = 428,820575 ; S27 = 613,330707

 

 

26 tháng 10 2016

Quy trình bấm phím Un : A chính là Un

Quy trình bấm phím Sn : X chính là Sn

Các giá trị D = 3 tức là U3 (số 3 thôi nhé) , D = 4 tức U4 ...

NV
6 tháng 1 2024

\(U_n=\dfrac{\left(n^2-1\right)}{n\left(n+2\right)}U_{n-1}\Rightarrow n\left(n+2\right).U_n=\left(n-1\right)\left(n+1\right).U_{n-1}\)

Đặt \(n\left(n+2\right).U_n=V_n\Rightarrow V_{n-1}=\left(n-1\right)\left(n+2-1\right).U_{n-1}=\left(n-1\right).\left(n+1\right)U_{n-1}\)

\(\Rightarrow V_n=V_{n-1}\)

\(\Rightarrow V_n=V_{n-1}=V_{n-2}=...=V_1\)

Có \(V_1=1.\left(1+2\right).U_1=1\)

\(\Rightarrow V_n=1\)

\(\Rightarrow U_n=\dfrac{V_n}{n\left(n+2\right)}=\dfrac{1}{n\left(n+2\right)}\)

\(\Rightarrow A=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2015.2017}\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\right)\)

\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)\)

\(=...\)