K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2018

Ta có   \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)

để A có giá trị nguyên thì 5 phải chia hết cho n-1 hay n-1 là ước của 5

Ư(5)={5,1,-1,-5}

\(\Rightarrow\)n={6,2,0,-4}

31 tháng 1 2018

gọi số cần tìm là A,Ta có: A+2CHIA HẾT CHO 3,4,5,6 HAY A+2 là bội chung của 3,4,5,6

BCNN(3,4,5,6)=60

\(\Rightarrow A+2=60.n\Rightarrow n=1,2,3,4,.... \)

lần lượt thử các số n.

Ta thấy n=7 thì A=418 chia hết cho 11

vậy số nhỏ nhất là 418

11 tháng 4 2017

để A có giá trị bằng 1

suy ra 3 phải chia hết cho n-1

suy ra n-1 \(\in\)Ư(3)={1,3 }

TH1 n-1=1\(\Rightarrow\)n=1+1=2

TH2 n-1=3\(\Rightarrow\)n=3+1=4

Vậy n = 2 hoặc n =4

11 tháng 4 2017

 a) để biểu thức A có giá trị = 1 suy ra 3:n-1=1   suy ra n-1=3

                                                                                     n=4

b) để A là số nguyên tố suy ra 3:n-1 là số nguyên dương

              từ trên suy ra n-1=1 hoặc 3

    nếu n-1=1 suy ra n =2   3/n-1=3 là snt

    nếu n-1=3  suy ra 3/n-1=3/3=1 loại vì ko là snt                                     

1 tháng 5 2018

Ta có :

\(A=\frac{n+1}{n-3}=\frac{\left(n-3\right)+4}{n-3}=1+\frac{4}{n-3}\)

Để  \(A\in Z\)thì  \(\frac{4}{n-3}\in Z\)

\(\Rightarrow n-3\inƯ_{\left(4\right)}=\left\{\pm1;\pm2;\pm4\right\}\)

Ta có bảng sau :

n-31-12-24-4
n42517-1

Vậy \(n\in\left\{4;2;5;1;7;-1\right\}\)

1 tháng 5 2018

Để \(A=\frac{n+1}{n-3}\)thì \(n+1⋮n-3\)

Ta có: \(n+1⋮n-3\)

\(\Rightarrow n-3+4⋮n-3\)

\(\Rightarrow4⋮n-3\)

Vì \(n\inℤ\Rightarrow n-3\inℤ\)

Mà \(4⋮n-3\Rightarrow n-3\inƯ\)của 4\(=\)\(\pm1;\pm2;\pm4\)

T̉a có bảng giá trị:

n-31-12-24-4
n42517-1

Đối chiếu điều kiện n thuộc Z suy ra n\(=\)4;2;5;1;7;-1

1 tháng 12 2016

1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)

\(3^{40}=\left(3^2\right)^{20}=9^{20}\)

\(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)

2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)

Ta có:\(n+3⋮d,2n+5⋮d\)

\(\Rightarrow2n+6⋮d,2n+5⋮d\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)

1 tháng 12 2016

3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)

\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)

\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)

\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)

6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)

\(2A=2^2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(A=2^{101}-2\)

\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)

3 tháng 7 2017

Có  \(4n-5⋮2n-1\)

\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)

Do  \(2\left(2n-1\right)⋮2n-1\)

\(\Rightarrow-3⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(-3\right)\)

\(\Rightarrow2n-1\in\left\{1;-1;3;-3\right\}\)

Ta có bảng sau :

   \(2n-1\)   \(1\)   \(-1\)   \(3\)   \(-3\)
   \(n\)   \(1\)   \(0\)   \(2\)   \(-1\)
6 tháng 2 2016

Dãy thứ nhất, số trước kém số sau 3 đơn vị. Dãy số thứ 2, số trước kém số sau 3 đơn vị. Dãy thứ 3, số trước kém số sau 4đơn vị

6 tháng 2 2016

Đặt 1=x1,....

Ta có dãy số :1,4,7,....

 Tổng quát:x2=x1+3;x3=x2+3;....

 Các câu sau cũng tương tự