Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)
\(=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\)
=>A=\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)
Và đến đây là hết biik giải nữa
a,Ta có: \(\frac{3}{10}=\frac{3}{10};\frac{3}{11}< \frac{3}{10};\frac{3}{12}< \frac{3}{10};\frac{3}{13}< \frac{3}{10};\frac{3}{14}< \frac{3}{10}\)
\(\Rightarrow S< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}=\frac{3}{2}=1,5\left(1\right)\)
Lại có: \(\frac{3}{10}>\frac{3}{15};\frac{3}{11}>\frac{3}{15};\frac{3}{12}>\frac{3}{15};\frac{3}{13}>\frac{3}{15};\frac{3}{14}>\frac{3}{15}\)
\(\Rightarrow S>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\left(2\right)\)
Từ (1) và (2) => 1 < S < 1,5
Vậy...
b, \(A=\frac{1}{61}+\frac{1}{62}+...+\frac{1}{100}\)
\(=\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)+\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)
Ta có: \(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};...;\frac{1}{80}=\frac{1}{80}\)
\(\Rightarrow\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}=\frac{20}{80}=\frac{1}{4}\left(1\right)\)
Lại có: \(\frac{1}{81}>\frac{1}{100};\frac{1}{82}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{20}{100}=\frac{1}{5}\left(2\right)\)
Từ (1) và (2) => \(A>\frac{1}{4}+\frac{1}{5}=\frac{9}{20}\)
Vậy...
Ta có:
1/49 + 1 = 50/49
2/48 + 1 = 50/48
3/47 + 1 = 50/47
.
.
.
47/3 + 1 = 50/3
48/2 + 1 = 50/2
0 + 1 = 50/50
Cộng vế theo vế dãy đẳng thức trên ta được:
1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50/2 + 50/3 + 50/4 +........+ 50/49 + 50/50
⇒ 1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50 x (1/2 + 1/3 + 1/4 +........+ 1/49 + 1/50)
⇒ B = 50A
⇒ A/B = 1/50
Ta có:
1/49 + 1 = 50/49
2/48 + 1 = 50/48
3/47 + 1 = 50/47
.
.
.
47/3 + 1 = 50/3
48/2 + 1 = 50/2
0 + 1 = 50/50
Cộng vế theo vế dãy đẳng thức trên ta được:
1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50/2 + 50/3 + 50/4 +........+ 50/49 + 50/50
⇒ 1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50 x (1/2 + 1/3 + 1/4 +........+ 1/49 + 1/50)
⇒ B = 50A
⇒ A/B = 1/50
\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)
\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)
\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)
\(\Rightarrow M< 1-\frac{1}{99}< 1\)
Dễ thấy M > 0 nên 0 < M < 1
Vậy M không là số tự nhiên.
\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))
\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\left(đpcm\right)\)
50A=\(\left(\frac{49}{1}+.......+\frac{1}{49}\right)49:2\)
50A= 1201
A=1201:50
A=\(\frac{1201}{10}\)=120.1
mà 120,1 ko phải số tự nhiên mà là số thập phân
=>A ko là số tự nhiên
a) Đặt B = \(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{49.51}\)
\(=100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\right)\)
Đặt C = \(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\)
\(=\left(\frac{1}{1.99}+\frac{1}{99.1}\right)+\left(\frac{1}{3.97}+\frac{1}{97.3}\right)+...+\left(\frac{1}{49.51}+\frac{1}{51.49}\right)\)
\(=2\cdot\frac{1}{1.99}+2\cdot\frac{1}{3.97}+...+2\cdot\frac{1}{49.51}\)
\(=2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)\)
Thay B và C vào A
\(\Rightarrow A=\frac{100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}{2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}=\frac{100}{2}=50\)
b) Đặt E = \(\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}\)
\(=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)
\(=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\)
\(=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Thay E vào B
\(\Rightarrow B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}=\frac{1}{100}\)
\(B=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)
\(B=\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)+...+\left(1+\frac{98}{2}\right)+1\)
\(B=\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}\)
\(B=100\left(\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}+\frac{1}{100}\right)\)
Ta có: \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}=\frac{1}{100}\)
Vậy...
P/s: Hoq chắc
#)Giải :
\(B=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)
\(B=1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{97}+1\right)+...+\left(\frac{98}{2}+1\right)\)
\(B=\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}\)
\(B=100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}=100\)
100A = \(\frac{99}{1}+1+\frac{98}{2}+1+...+\frac{1}{99}+1-99\)
100A=\(\frac{100}{1}+\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}-99\)
100A =\(\left(\frac{100}{2}+\frac{100}{3}+..+\frac{100}{99}+100-99\right)\)
100A=\(\left(\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+1\right)\)
100A=\(\left(\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\right)\)
100A=100.\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)
A=\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)