Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vẽ phân giác BD của góc ABC. theo tính chất đường phân giác ta có \(\frac{BA}{BC}=\frac{DA}{DC}\Rightarrow\frac{DA}{BA}=\frac{DC}{BC}\left(1\right)\)
theo tính chất dãy tỉ số bằng nhau ta có \(\frac{DA}{BA}=\frac{DC}{BC}=\frac{DA+DC}{BA+BC}=\frac{AC}{AB+BC}\left(2\right)\)
tam giác BAD vuông tại A nên \(\tan\widehat{ABD}=\frac{DA}{BA}\left(3\right)\)
từ (2) và (3) ta có \(\tan\widehat{ABD}=\frac{AC}{AB+BC}\)hay \(\tan\frac{\widehat{B}}{2}=\frac{AC}{AB+BC}\)
b) áp dụng kết quả phần (a) ở trên, giả sử tam giác ABC vuông cân tại A, AB=a khi đó
\(\tan\frac{\widehat{B}}{2}=\tan22^030'=\frac{AC}{AB+BC}=\frac{a}{a+a\sqrt{2}}=\frac{1}{1+\sqrt{2}}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1\)
áp dụng kết quả ở phần (a) ở trên, giả sử tam giác ABC vuông tại A, \(\widehat{B}=30^o;AC=a\)khi đó
\(\tan\frac{\widehat{B}}{2}=\tan15^o=\frac{AC}{AB+BC}=\frac{a}{a\sqrt{3}+2a}=\frac{1}{2+\sqrt{3}}=\frac{2-\sqrt{3}}{4-3}=2-\sqrt{3}\)
2/ \(\frac{sin^3a-cos^3a}{sin^3a+cos^3a}=\frac{tan^3a-1}{tan^3a+1}=\frac{3^3-1}{3^3+1}=\frac{13}{14}\) (chia tử mẫu cho cos3a)